参考文献/References:
[1]凌启鸿, 张洪程, 丁艳锋, 等. 水稻高产技术的新发展—精确定量栽培[J].中国稻米, 2005 (1): 3-7.
[2]陈温福, 潘文博, 徐正进. 我国粳稻生产现状及发展趋势[J]. 沈阳农业大学学报, 2006, 37(6): 801-805.
[3]张军, 张洪程, 霍中洋, 等. 不同栽培方式对双季晚粳稻产量及温光利用的影响[J]. 中国农业科学, 2013, 46(10): 2130-2141.
[4]翟羽娟, 张艳红, 刘兆礼, 等. 基于主成分分析的植被指数与叶面积指数相关性研究[J]. 测绘与空间地理信息, 2015, 38(9): 20-23.
[5]徐新刚. 农作物产量模型研究[D]. 北京:中国科学院研究生院,2007.
[6]贺振,贺俊平.基于NOAA-NDVI的河南省冬小麦遥感估产[J].干旱区资源与环境,2013,27(5): 46-52.
[7]GAMON J A, FIELD C B, BILGER W, et al. Remote sensing of the xanthophyll cycle and chlorophyll fluorescence in sunflower leaves and canopies[J]. Oecologia, 1990, 85(1):1-7.
[8]GAMON J A, PEUELAS J, FIELD C B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency[J]. Remote Sensing of Environment, 1992, 41(1):35-44.
[9]GAMON J A, SERRANO L, SURFUS J S. The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels[J]. Oecologia, 1997,112(4):492-501.
[10]XIAO X M, ZHANG Q Y, BRASWELL B, et al. Modeling gross PRImary production of temperate deciduous broadleaf forest using satellite images and climate data[J]. Remote Sensing of Environment, 2004, 91(2): 256-270.
[11]YUAN W P, LIU S G, ZHOU G S, et al. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross PRImary production across biomes[J]. Agricultural and Forest Meteorology, 2007, 143(3/4):189-207.
[12]JIANG Y, ZHANG J H, XU X D, et al. A GPP assimilation model for the southeastern Tibetan Plateau based on CO2 eddy co-variance flux tower and remote sensing data[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 23: 213-225.
[13]VEROUSTRAETE F, SABBE H, EERENS H. Estimation of carbon mass fluxes over Europe using the C-Fix model and Euroflux data[J]. Remote Sensing of Environment, 2002, 83(3): 376-399.
[14]GOETZ S J, PRINCE S D, GOWARD S N, et al. Satellite remote sensing of PRImary production: An improved production efficiency modeling approach[J]. Ecological Modelling, 1999, 122(3): 239-255.
[15]杨鹏, 吴文斌, 周清波, 等. 基于光谱反射信息的作物单产估测模型研究进展[J]. 农业工程学报, 2008, 24(10): 262-268.
[16]黎锐, 李存军, 徐新刚, 等. 基于支持向量回归(SVR)和多时相遥感数据的冬小麦估产[J]. 农业工程学报, 2009, 25 (7): 114-117.
[17]黄健熙, 武思杰, 刘兴权, 等. 基于遥感信息与作物模型集合卡尔曼滤波同化的区域冬小麦产量预测 [J]. 农业工程学报, 2012, 28(4): 142-148.
[18]TURNER D P, GOWER S T, COHEN W B, et al. Effects of spatial variability in light use efficiency on satellite-based NPP monitoring [J]. Remote Sensing of Environment, 2002, 80(3):397-405.
[19]LU D S. The potential and challenge of remote sensing based biomass estimation [J]. International Journal of Remote Sensing, 2006, 27(7):1297-1328.
[20]徐新刚. 农作物单产模型研究[D]. 北京: 中国科学院, 2007.
[21]赵英时. 遥感应用分析原理与方法[M]. 北京: 科学出版社, 2003.
[22]张威, 潘剑君, 李勇, 等. 基于冠层光谱特征的冬小麦产量估算研究[J]. 土壤通报, 2015, 46(1): 169-176.
[23]江东, 王建华. 人工神经网络在遥感中的应用与发展[J].国土资源遥感, 1999 (2): 15-21.
[24]李哲, 张军涛. 人工神经网络与遗传算法相结合在作物估产中的应用——以吉林省玉米估产为例[J]. 生态学报, 2001, 21(5):716-720.
相似文献/References:
[1]孟令奎,李晓香,张文.植被覆盖区VIIRS与MODIS遥感指数的相关性[J].江苏农业学报,2018,(03):570.[doi:doi:10.3969/j.issn.1000-4440.2018.03.013]
MENG Ling-kui,LI Xiao-xiang,ZHANG Wen.The relationship between VIIRS and MODIS remote sensing index in vegetation coverage area[J].,2018,(01):570.[doi:doi:10.3969/j.issn.1000-4440.2018.03.013]
[2]范松克,郝成元.2001-2016年河南省NDVI时空变化特征分析[J].江苏农业学报,2019,(04):860.[doi:doi:10.3969/j.issn.1000-4440.2019.04.016]
FAN Song ke,HAO Cheng yuan.Temporal and spatial variation analysis of NDVI in Henan from 2001 to 2016[J].,2019,(01):860.[doi:doi:10.3969/j.issn.1000-4440.2019.04.016]