[1]马航,陈春玲,许童羽,等.基于叶片尺度的东北粳稻产量估测[J].江苏农业学报,2017,(01):81-86.[doi:10.3969/j.issn.1000-4440.2017.01.013 ]
 MA Hang,CHEN Chun-ling,XU Tong-yu,et al.The yield estimation research of japonica in northeast China at leaf scale[J].,2017,(01):81-86.[doi:10.3969/j.issn.1000-4440.2017.01.013 ]
点击复制

基于叶片尺度的东北粳稻产量估测()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2017年01期
页码:
81-86
栏目:
耕作栽培·资源环境
出版日期:
2017-02-28

文章信息/Info

Title:
The yield estimation research of japonica in northeast China at leaf scale
作者:
马航1陈春玲12许童羽12于丰华1马明洋1郭雷1
(1.沈阳农业大学信息与电气工程学院,辽宁沈阳110161;2.沈阳农业大学辽宁省农业信息化工程技术中心,辽宁沈阳110161)
Author(s):
MA Hang1CHEN Chun-ling12XU Tong-yu12YU Feng-hua1MA Ming-yang1GUO Lei1
(1.College of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang 110161, China;2.Agricultural Informatization Engineering Technology Center in Liaoning Province, Shenyang 110161,China)
关键词:
NDVIPRI粳稻叶片估产
Keywords:
NDVIPRIjaponica rice leafyield estimation
分类号:
S511.2+2
DOI:
10.3969/j.issn.1000-4440.2017.01.013
文献标志码:
A
摘要:
及时准确地估测水稻产量是服务现代农业的重要内容,对制定科学的粮食政策具有重要的现实意义。本研究以东北粳稻为例,利用试验区粳稻叶片植被指数归一化差值植被指数(NDVI)和光化学植被指数(PRI)估测粳稻产量。基于2015年粳稻生长关键期6-9月的叶片NDVI和PRI,结合试验小区产量数据,建立了基于试验区叶片NDVI和PRI的粳稻产量估算模型。单月NDVI与产量一元线性模型的R2范围为0.455~0.581,平均估产精度为96.36%。单月PRI与产量一元线性模型的R2范围为0.396~0.709,平均估产精度为96.68%。单月NDVI和PRI复合估产二元线性模型的R2范围为0.655~0.784,平均估产精度为97.26%。利用不同月份组合的NDVI累积和与PRI累积和建立的粳稻产量模型R2范围为0.765~0.949,估产精度均在97.48%以上。所建参数模型中拟合效果最好的是6月、8月、9月NDVI累积和与PRI累积和复合的估产模型,R2为0.949,估产精度高达98.82%,此模型可作为粳稻估产的一种参考模型。
Abstract:
Estimating rice yield timely and accurately is an important part of modern agriculture research and is also significant in food policy formulation. The study used normalized difference vegetation index and photochemical reflectance index of japonica rice leaf in test area to estimate rice yield. Yield estimation models were made, which based on NDVI and PRI data from June to September, 2015. The range of the correlation coefficients (R2) of onevariable linear model between yield and NDVI, PRI was 0.455-0.581 and 0.369-0.709. The estimation accuracy monthly was 96.36% and 96.68%, respectively. The range of the correlation coefficients (R2) of twovariable linear model between yield and NDVI, PRI was 0.655-0.784 and the estimation accuracy was 97.26%.The correlation coefficients of yield model between accumulated NDVI and PRI of different months and japonica rice yield arranged from 0.765 to 0.949 and the accuracy was all above 97.48%.The best model was the composite yield estimation model using the NDVI and PRI cumulative sum(CUSUM) of three months, June, August and September, its R2 was 0.949 and the estimation accuracy was 98.82%, which could be used as a reference model of japonica rice yield estimation.

参考文献/References:

[1]凌启鸿, 张洪程, 丁艳锋, 等. 水稻高产技术的新发展—精确定量栽培[J].中国稻米, 2005 (1): 3-7.
[2]陈温福, 潘文博, 徐正进. 我国粳稻生产现状及发展趋势[J]. 沈阳农业大学学报, 2006, 37(6): 801-805.
[3]张军, 张洪程, 霍中洋, 等. 不同栽培方式对双季晚粳稻产量及温光利用的影响[J]. 中国农业科学, 2013, 46(10): 2130-2141.
[4]翟羽娟, 张艳红, 刘兆礼, 等. 基于主成分分析的植被指数与叶面积指数相关性研究[J]. 测绘与空间地理信息, 2015, 38(9): 20-23.
[5]徐新刚. 农作物产量模型研究[D]. 北京:中国科学院研究生院,2007.
[6]贺振,贺俊平.基于NOAA-NDVI的河南省冬小麦遥感估产[J].干旱区资源与环境,2013,27(5): 46-52.
[7]GAMON J A, FIELD C B, BILGER W, et al. Remote sensing of the xanthophyll cycle and chlorophyll fluorescence in sunflower leaves and canopies[J]. Oecologia, 1990, 85(1):1-7.
[8]GAMON J A, PEUELAS J, FIELD C B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency[J]. Remote Sensing of Environment, 1992, 41(1):35-44.
[9]GAMON J A, SERRANO L, SURFUS J S. The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels[J]. Oecologia, 1997,112(4):492-501.
[10]XIAO X M, ZHANG Q Y, BRASWELL B, et al. Modeling gross PRImary production of temperate deciduous broadleaf forest using satellite images and climate data[J]. Remote Sensing of Environment, 2004, 91(2): 256-270.
[11]YUAN W P, LIU S G, ZHOU G S, et al. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross PRImary production across biomes[J]. Agricultural and Forest Meteorology, 2007, 143(3/4):189-207.
[12]JIANG Y, ZHANG J H, XU X D, et al. A GPP assimilation model for the southeastern Tibetan Plateau based on CO2 eddy co-variance flux tower and remote sensing data[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 23: 213-225. 
[13]VEROUSTRAETE F, SABBE H, EERENS H. Estimation of carbon mass fluxes over Europe using the C-Fix model and Euroflux data[J]. Remote Sensing of Environment, 2002, 83(3): 376-399. 
[14]GOETZ S J, PRINCE S D, GOWARD S N, et al. Satellite remote sensing of PRImary production: An improved production efficiency modeling approach[J]. Ecological Modelling, 1999, 122(3): 239-255.
[15]杨鹏, 吴文斌, 周清波, 等. 基于光谱反射信息的作物单产估测模型研究进展[J]. 农业工程学报, 2008, 24(10): 262-268. 
[16]黎锐, 李存军, 徐新刚, 等. 基于支持向量回归(SVR)和多时相遥感数据的冬小麦估产[J]. 农业工程学报, 2009, 25 (7): 114-117. 
[17]黄健熙, 武思杰, 刘兴权, 等. 基于遥感信息与作物模型集合卡尔曼滤波同化的区域冬小麦产量预测 [J]. 农业工程学报, 2012, 28(4): 142-148.
[18]TURNER D P, GOWER S T, COHEN W B, et al. Effects of spatial variability in light use efficiency on satellite-based NPP monitoring [J]. Remote Sensing of Environment, 2002, 80(3):397-405.
[19]LU D S. The potential and challenge of remote sensing based biomass estimation [J]. International Journal of Remote Sensing, 2006, 27(7):1297-1328. [20]徐新刚. 农作物单产模型研究[D]. 北京: 中国科学院, 2007.
[21]赵英时. 遥感应用分析原理与方法[M]. 北京: 科学出版社, 2003.
[22]张威, 潘剑君, 李勇, 等. 基于冠层光谱特征的冬小麦产量估算研究[J]. 土壤通报, 2015, 46(1): 169-176.
[23]江东, 王建华. 人工神经网络在遥感中的应用与发展[J].国土资源遥感, 1999 (2): 15-21.
[24]李哲, 张军涛. 人工神经网络与遗传算法相结合在作物估产中的应用——以吉林省玉米估产为例[J]. 生态学报, 2001, 21(5):716-720.

相似文献/References:

[1]孟令奎,李晓香,张文.植被覆盖区VIIRS与MODIS遥感指数的相关性[J].江苏农业学报,2018,(03):570.[doi:doi:10.3969/j.issn.1000-4440.2018.03.013]
 MENG Ling-kui,LI Xiao-xiang,ZHANG Wen.The relationship between VIIRS and MODIS remote sensing index in vegetation coverage area[J].,2018,(01):570.[doi:doi:10.3969/j.issn.1000-4440.2018.03.013]
[2]范松克,郝成元.2001-2016年河南省NDVI时空变化特征分析[J].江苏农业学报,2019,(04):860.[doi:doi:10.3969/j.issn.1000-4440.2019.04.016]
 FAN Song ke,HAO Cheng yuan.Temporal and spatial variation analysis of NDVI in Henan from 2001 to 2016[J].,2019,(01):860.[doi:doi:10.3969/j.issn.1000-4440.2019.04.016]

备注/Memo

备注/Memo:
收稿日期:2016-05-04 基金项目:国家重点研发计划项目(2016YFD020060307);北京农业质量标准与技术研究中心开放性课题项目(2015) 作者简介:马航(1989-),男,山东枣庄人,硕士,从事农业航空技术研究。 (Tel)15040165263;(E-mail)1057934411@qq.com 通讯作者:陈春玲,(Tel)13700031971;(E-mail)snccl@163.com
更新日期/Last Update: 2017-04-12