[1]韩金龙,李慧,蔺经,等.核黄素对盐胁迫下杜梨叶片抗氧化系统的影响[J].江苏农业学报,2015,(04):893-898.[doi:10.3969/j.issn.1000-4440.2015.04.029]
 HAN Jing-long,LI Hui,LIN Jing,et al.The regulatory role of riboflavin in antioxidant system of Pyrus betulaefolia in response to salt tolerance[J].,2015,(04):893-898.[doi:10.3969/j.issn.1000-4440.2015.04.029]
点击复制

核黄素对盐胁迫下杜梨叶片抗氧化系统的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2015年04期
页码:
893-898
栏目:
园艺
出版日期:
2015-08-31

文章信息/Info

Title:
The regulatory role of riboflavin in antioxidant system of Pyrus betulaefolia in response to salt tolerance
作者:
韩金龙12李慧1蔺经1杨青松1常有宏1
(1.江苏省农业科学院园艺研究所/江苏省高效园艺作物遗传改良重点实验室,江苏南京210014;2.南京农业大学园艺学院,江苏南京210095)
Author(s):
HAN Jing-long12LI Hui1LIN Jing1YANG Qing-song1CHANG You-hong1
(1.Institute of Horticulture, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China;2.College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China)
关键词:
杜梨核黄素盐胁迫过氧化作用抗氧化酶
Keywords:
Pyrus betulaefoliariboflavinsalt stressperoxidationantioxidant enzyme
分类号:
S661.2
DOI:
10.3969/j.issn.1000-4440.2015.04.029
文献标志码:
A
摘要:
为探讨外源核黄素对盐胁迫下杜梨叶片抗氧化系统的影响,以梨砧木杜梨幼苗为供试材料,在水培条件下,研究了外源施加不同浓度核黄素对200 mmol/L NaCl胁迫下其叶片抗氧化酶活性、活性氧产生、膜质过氧化和抗氧化物质含量的影响。结果显示:NaCl胁迫3 d后,杜梨叶片中超氧化物歧化酶(SOD)活性减弱,过氧化物酶(POD)、过氧化氢酶(CAT)、谷胱甘肽还原酶(GR)、谷胱甘肽过氧化物酶(GSH-Px)、抗坏血酸过氧化物酶(APX)的活性增强,抗氧化物质谷胱甘肽(GSH)和抗坏血酸(AsA)合成下降,活性氧(O2·-、H2O2)和丙二醛(MDA)大量积累。施加外源核黄素能增强NaCl胁迫下杜梨叶片中SOD、POD、CAT、GR、GSH-Px和APX的活性,提高GSH和AsA的含量,减少O2·-和H2O2的产生,降低脂质过氧化程度,有效缓解盐胁迫对杜梨叶片的过氧化伤害,其中以10 μmol/L浓度的核黄素处理效果最为显著。
Abstract:
To explore the effect of exogenous riboflavin on the antioxidant system in the leaves of Pyrus betulaefolia under salt stress, the antioxidant enzymes activities, the production of active oxygen, lipid peroxidation and antioxidants contents of the leaves of P. betulaefolia were analysed when its seedlings under 200 mmol/L NaCl stress were exposed to different concentrations (0 μmol/L, 5 μmol/L, 10 μmol/L, 50 μmol/L, 100 μmol/L) of riboflavin in hydroponic culture, after 3-d salt stress, the activity of superoxide dismutase (SOD) was decreased, the activities of peroxidase (POD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GSH-Px) and ascorbic acid peroxidase (APX) were enhanced, the contents of GSH and AsA were reduced, and the accumulation of O2〖KG-1〗·〖KG-*8〗-, H2O2 and MDA were increased. Riboflavin application alleviated the damage caused by NaCl by improving the activities of SOD, POD, CAT, GR, GSH-Px and APX, increasing the contents of GSH and AsA, reducing the productions of O2〖KG-1〗·〖KG-*8〗- and H2O2 were decreased, and decreasing the degree of lipid peroxidation. The riboflavin with the concentration of 10 μmol/L showed the best effects.

参考文献/References:


[1]PARIDA A K, DAS A B. Salt tolerance and salinity effects on plants: A review [J]. Ecotox Environ Safe, 2005, 60(3):324-349.
[2]ZHU J K. Regulation of ion homeostasis under salt stress [J]. Curr Opin Plant Biol, 2003, 6(5):441-445.
[3]KHAN M N, SIDDIQUI M H, MOHAMMAD F, et al. Calcium chloride and gibberellic acid protect linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidative defence system and osmoprotectant accumulation [J]. Acta Physiol Plant, 2010, 32(1):121-132.
[4]TALAAT N B, SHAWKY B T. 24-Epibrassinolide alleviates salt-induced inhibition of productivity by increasing nutrients and compatible solutes accumulation and enhancing antioxidant system in wheat (Triticum aestivum L.) [J]. Acta Physiol Plant, 2013, 35(3):729-740.
[5]NISHIHARA E, KONDO K, PARVEZ M M, et al. Role of 5-aminole-vulinic acid (ALA) on active oxygen-scavenging system in NaCl-treated spinach (Spinacia oleracea) [J]. Plant Physiol, 2003, 160(9):1085-1091.
[6]SYEED S, ANJUM N A, NAZAR R, et al. Salicylic acid-mediated changes in photosynthesis, nutrients content and antioxidant metabolism in two mustard (Brassica juncea L.) cultivars differing in salt tolerance [J]. Acta Physiol Plant, 2011, 33(3):877-886.
[7]SANDOVAL F J, ZHANG Y, ROJE S. Flavin nucleotide metabolism in plants: monofunctional enzymes synthesize FAD in plastids [J]. J Biol Chem, 2008, 283(45):30890-30900.
[8]MORI T, SAKURAI M. Effects of riboflavin and increased sucrose on anthocyanin production in suspended strawberry cell cultures [J]. Plant Sci, 1995, 110(1):147-153.
[9]TAHERI P, TARIGHI S. Riboflavin induces resistance in rice against Rhizoctonia solani via jasmonate-mediated priming of phenylpropanoid pathway [J]. J Plant Physiol, 2010, 167(3):201-208.
[10]AZAMI-SARDOOEI Z, FRANCA S C, VLEESSCHAUWER D D, et al. Riboflavin induces resistance against Botrytis cinerea in bean, but not in tomato, by priming for a hydrogen peroxide-fueled resistance response [J]. Physiol Mol Plant P, 2010, 75(1-2):23-29.
[11]DENG B, JIN X. Riboflavin spraying impairs the antioxidant defense system but induces waterlogging tolerance in tobacco [J]. Acta Physiol Plant, 2013, 35(9):2769-2776.
[12]DENG B, JIN X, YANG Y, et al. The regulatory role of riboflavin in the drought tolerance of tobacco plants depends on ROS production [J]. Plant Growth Regul, 2014, 72(3):269-277.
[13]WANG S Y, TZENG D D S. Methionine-riboflavin mixtures with surfactants and metal ions reduce powdery mildew infection in straw berry plants [J]. J Am Soc Sci, 1998, 123(6):987-991.
[14]王鑫,黄文江,李梦瑶,等. 大棚和露地条件下梨叶片生长发育特性[J]. 江苏农业学报,2012,28(1):166-171.
[15]秦善知,陈斌,陆道礼,等. 基于便携式近红外光谱仪检测梨可溶性固形物[J]. 江苏农业科学,2014,42(8):284-286.
[16]田路明,曹玉芬,董星光,等. 梨野生种石细胞团含量及直径大小的比较[J]. 江苏农业科学,2014,42(1):135-137.
[17]OKUBO M, SAKURATANI T. Effects of sodium chloride on survival and stem elongation of two Asian pear rootstock seedlings [J]. Sci Hortic, 2000, 85(1-2):85-90.
[18]MATSUMOTO K, TAMURA F, CHUN J P, et al. Enhancement in salt tolerance of Japanese pear by using Pyrus betulaefolia rootstock [J]. Hortic Res (Japan), 2007, 6(1):47-52.
[19]OKUBO M, FURUKAWA Y, SAKURATANI T. Growth, flowering and leaf properties of pear cultivars grafted on two Asian pear rootstock seedlings under NaCl irrigation [J]. Sci Hortic, 2000, 85(1-2):91-101.
[20]MATSUMOTO K, CHUN J P, TAMURA F, et al. Salt tolerance in Pyrus species is linked to levels of Na and Cl translocation from roots to leaves [J]. J Jap Soc Hortic Sci, 2006, 75(5):385-391.
[21]WU Q S, ZOU Y N. Adaptive responses of birch-leaved pear (Pyrus betulaefolia) seedlings to salinity stress [J]. Not Bot Horti Agrobo, 2009, 37(1):133-138.
[22]PATTERSON B D, MACRAE E A, FERGUSON I B. Estimation of hydrogen peroxide in plant extracts using titanium (IV) [J]. Anal Biochem, 1984, 139(2):487-492.
[23]ELSTNER E F, HEUPEL A. Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase [J]. Anal Biochem, 1976, 70(2):616-620.
[24]李合生. 植物生理学实验技术指导 [M]. 北京:高等教育出版社,2001.
[25]BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal Biochem, 1976, 72(1-2): 248-254.
[26]MA C, WANG Z, KONG B, et al. Exogenous trehalose differentially modulate antioxidant defense system in wheat callus during water deficit and subsequent recovery [J]. Plant Growth Regul, 2013, 70(3): 275-285.
[27]AEBI H. Catalase in vitro [J]. Methods Enzymol, 1984, 105:121-126.
[28]ALI B, TAO Q, ZHOU Y, et al. 5-Aminolevolinic acid mitigates the cadmium-induced changes in Brassica napus as revealed by the biochemical and ultra-structural evaluation of roots [J]. Ecotox Environ Safe, 2013, 92:271-280.
[29]黄爱缨,吴珍龄. 水稻谷胱甘肽过氧化物酶的测定法[J]. 西南农业大学学报, 1999, 21(4):1-4.
[30]NAKANO Y, ASADA K. Hydrogen peroxide is scanvenged by ascorbated specific peroxidase in spinach chloroplasts [J]. Plant Cell Physiol, 1981, 22(5):867-880.
[31]ANDERSON M E. Determination of glutathione and glutathione disulfide in biological samples [J]. Method Enzymol, 1985, 113:548-554. 
[32]LAW M Y, CHARLES S A, HALLIWELL B. Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplast. The effect of hydrogen peroxide and of paraquat [J]. J Biochem, 1983, 253:109-116.
[33]AZEVEDO N A D, PRISCO J T, ENEAS-FILHO J, et al. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes [J]. Environ Exp Bot, 2006, 56(1):87-94.
[34]MOLASSIOTIS A, SOTIROPOULOS T, TANOU G, et al. Boron-induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM9 (Malus domestica Borkh) [J]. Environ Exp Bot, 2006, 56(1):54-62.
[35]NASIR K M, MANZER H S, MOHAMMAD F, et al. Calcium chloride and gibberellic acid protect linseed from NaCl stress by inducing antioxidative defense system and osmoprotectant accumulation [J]. Acta Physiol Plant, 2010, 32(1):121-132.
[36]SAIRAM R K, SRIVASTAVA G C. Changes in antioxidant antivity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress [J]. Plant Sci, 2002, 162(6):897-904.
[37]RAMAKRISHNA B, RAO S S R. 24-Epibrassinolide alleviated zinc-induced oxidative stress in radish (Raphanus sativus L.) seedlings by enhancing antioxidative system [J]. Plant Growth Regul, 2012, 68(2):249-259.
[38]MA L, LI Y, YU C, et al. Alleviation of exogenous oligochitosan on wheat seedlings growth under salt stress [J]. Protoplasma, 2012, 249(2):393-399.
[39]MITTAL S, KUMARI N, SHARMA V. Differential response of salt stress on Brassica juncea: photosynthetic performance, pigment, proline, D1 and antioxidant enzymes [J]. Plant Physiol Biochem, 2012, 54:17-26.
[40]SHALATA A, MITTOVA V, VOLOKITA M, et al. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidative system[J]. Physiol Plant, 2001, 112(4):487-494.
[41]HAMID B G, YAMAUCHI Y, SHIMADA E, et al. Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts [J]. Plant Sci, 2004, 166(4):919-928.
[42]OUESLATI S, KARRAY-BOURAOUI N, ATTIA H, et al. Physiological and antioxidant responses of Mentha pulegium (Pennyroyal) to salt stress [J]. Acta Physiol Plant, 2010, 32(2):289-296.
[43]NAEEM M S, RASHEED M, LIU D, et al. 5-Aminolevulinic acid ameliorates salinity-induced metabolic, water-related and biochemical changes in Brassica napus L. [J]. Acta Physiol Plant, 2011, 33:517-528.
[44]KUZNIAK E, SKLODOWSKA M. Compartment-specific role of the ascorbate-glutathione cycle in the response of tomato leaf cells to Botrytis cinerea infection[J]. Journal of Experimental Botany, 2005, 56(413):921-933.
[45]HUANG R, CHOE E, MIN D B. Kinetics for singlet oxygen formation by riboflavin photosensitization and the reaction between riboflavin and singlet oxygen [J]. J Food Sci, 2004, 69(9):726-732.
[46]EICHLER M, LAVI R, SHAINBERG A, et al. Flavins are source of visible-light-induced free radical formation in cells [J]. Las Surg Med, 2005, 37(4):314-319. 
[47]MITTLER R. Oxidative stress, antioxidants and stress tolerance [J]. Trends Plant Sci, 2002, 7(9):405-410.
[48]GILL S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants [J]. Plant Physiol Biochem, 2010, 48(12):909-930. 
[49]ABOGADALLAH G M. Antioxidative defense under salt stress [J]. Plant Signal Behav, 2010, 5(4):369-374.
[50]AZEVEDO N A D, PRISCO J T, ENEAS-FILHO J, et al. Hydrogen peroxide pre-treatment induces salt stress acclimation in maize plants[J]. J Plant Physiol, 2005, 162(10):1114-1122.
[51]SHARMA P, JHA A B, DUBEY R S, et al. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions [J]. J Bot, 2012, 2012(2012):1-26.〖ZK)〗〖FL)〗

备注/Memo

备注/Memo:
收稿日期:2015-01-19 基金项目:江苏省农业科技自主创新基金项目[CX(14)5018];国家自然科学基金项目(31372051) 作者简介:韩金龙(1989-),男,山西霍州人,硕士研究生,主要从事果树逆境生理和分子生物学研究。(E-mail)hjlong24@126.com 通讯作者:常有宏,(E-mail)cyh@jaas.ac.cn
更新日期/Last Update: 2015-08-31