[1]伊祖涛,张海艳.糯玉米胚乳发育过程中淀粉粒粒度分布的变化[J].江苏农业学报,2015,(04):743-749.[doi:10.3969/j.issn.1000-4440.2015.04.006]
 YI Zu-tao,ZHANG Hai-yan.Change of starch granule size distribution during endosperm development in waxy corn[J].,2015,(04):743-749.[doi:10.3969/j.issn.1000-4440.2015.04.006]
点击复制

糯玉米胚乳发育过程中淀粉粒粒度分布的变化()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2015年04期
页码:
743-749
栏目:
遗传育种·生理生化
出版日期:
2015-08-31

文章信息/Info

Title:
Change of starch granule size distribution during endosperm development in waxy corn
作者:
伊祖涛1张海艳12
(1.青岛农业大学农学与植物保护学院/山东省旱作农业技术重点实验室,山东青岛266109;2.山东省小麦玉米周年高产高效生产协同创新中心,山东泰安271018)
Author(s):
YI Zu-tao1ZHANG Hai-yan12
(1.College of Agronomy and Plant Protection, Qingdao Agricultural University/Shandong Key Laboratory of Dry Farming Technique, Qingdao 266109, China;2.Cooperative Innovation Center of Efficient Production with High Annual Yield of Wheat and Corn, Taian 271018, China)
关键词:
糯玉米胚乳淀粉粒径粒度分布
Keywords:
waxy cornendospermstarchdiametersize distribution
分类号:
S513.033
DOI:
10.3969/j.issn.1000-4440.2015.04.006
文献标志码:
A
摘要:
为明确糯玉米淀粉粒粒度分布形成过程及特征,为糯玉米淀粉品质改良及调控糯玉米淀粉粒粒度提供理论依据,采用激光衍射粒度分析仪测定糯玉米胚乳发育过程中淀粉粒粒径以及体积、表面积和数目分布的变化。结果表明,授粉后10~20 d,糯玉米胚乳淀粉粒粒径下限逐渐减小,粒径上限和平均粒径显著增大;授粉后20 d一直到成熟期,粒径各项指标无显著变化。随着胚乳发育,糯玉米胚乳淀粉粒体积和表面积分布均呈现“单峰-双峰-三峰”的动态变化,数目分布始终表现为单峰曲线。以成熟期淀粉粒体积分布三峰曲线的谷值为界线,将糯玉米淀粉粒分为小型(<3.519 μm)、中型(3.519~7.422 μm)和大型(>7.422 μm)。胚乳发育前期,小型淀粉粒所占体积和表面积百分比呈降低趋势,数目百分比呈增加趋势,中型淀粉粒所占体积、表面积和数目百分比整体上呈降低趋势,而大型淀粉粒则呈增加趋势;淀粉粒的体积、表面积和数目分布均以小型淀粉粒所占比例最高,其次为中型淀粉粒,大型淀粉粒所占比例最低。胚乳发育中后期,不同粒径淀粉粒分布情况均趋于稳定,体积分布以大型淀粉粒为主,而表面积和数目分布以小型淀粉粒为主。因此,胚乳发育前期是糯玉米淀粉粒形成的关键时期,此时期调控淀粉粒粒度分布,可有效改良糯玉米淀粉品质。
Abstract:
In this study, the diameter, volume, surface area and number distribution of starch granule during waxy corn endosperm development were determined using laser diffraction particle size analyzer. The results showed that the minimum of starch granule decreased, the maximum and mean of starch granule increased from 10 DAP (days after pollination) to 20 DAP. The minimum, maximum and mean of starch granule didn’t have a significant change afterwards. With endosperm development, starch granule volume and surface area distribution showed a similar dynamics of “single peak-double peak-three peak” curves, however, the number distribution exhibited a single peak curve all along. According to the concave point of three peak curve of starch granule volume distribution at maturity, starch granules were classified into three types: small (<3.519 μm), middle (3.519-7.422 μm) and large (>7.422 μm). At the earlier period of endosperm development, the volume and surface area percent of small starch granule decreased whereas the number percent increased, the volume percent, surface area percent and number percent of middle starch granule droped, and those of large starch granule increased. Small granule starch was the most abundant and accounted for the biggest surface area and volume, followed by middle granule and large granule starch. At the middle and late period of endosperm development, large starch granule was predominant in volume distribution and small starch granule was predominant in surface area and number distribution. Therefore, the key phase of starch granule formation was the earlier period of endosperm development when starch granule size distribution could be controlled to improve starch quality of waxy corn.

参考文献/References:


[1]徐惠娟,陈彦云. 马铃薯原原种萌发前后淀粉、还原糖含量及淀粉磷酸化酶活性的分析[J]. 江苏农业科学,2014,42(9):95-97.
[2]刘新红,党斌,吴昆仑,等. 淀粉和蛋白质组成对裸大麦面条食用品质的影响[J]. 江苏农业科学,2014,42(5):205-209.
[3]刘得明,曹健生,解道斌,等. 7 个淀粉型甘薯品种的主要经济特性[J]. 江苏农业科学,2013,41(8):93-94.
[4]唐忠厚,李洪民,李强,等. 基于近红外光谱技术预测甘薯块根淀粉与糖类物质含量[J]. 江苏农业学报,2013,29(6):1260-1265.
[5]TETLOW I J. Starch biosynthesis in developing seeds[J]. Seed Science Research, 2011, 21: 5-32. 
[6]GAGAN D S, AMRINDER S B, SUKHCHARN S, et al. Physicochemical, pasting, thermal and morphological characteristics of Indian water chestnut (Trapa natans) starch[J]. Starch, 2009, 61(1): 35-42. 
[7]WEI C, ZHANG J, CHEN Y, et al. Physicochemical properties and development of wheat large and small starch granules during endosperm development[J]. Acta Physiology Plant, 2010, 32(5): 905-916. 
[8]银永安,齐军仓,李卫华,等. 小麦胚乳A、B型淀粉理化特性研究[J]. 中国农业科学, 2010, 43(11): 2372-2379. 
[9]AO Z H, JANE J L. Characterization and modeling of the A- and B-granule starches of wheat, triticale, and barley[J]. Carbohydrate Polymers, 2007, 67(1): 46-55. 
[10]GEERA B P, NELSON J E, SOUZA E, et al. Composition and properties of A- and B-type starch granules of wild-type, partial waxy, and waxy soft wheat[J]. Cereal Chemistry, 2006, 83(5): 551-557. 
[11]陆大雷,郭换粉,董策,等. 生长季节对糯玉米淀粉粒分布和热力学特性的影响[J]. 作物学报, 2010, 36(11): 1998-2003.
[12]印志同,薛林,陈国清,等. 糯玉米育种概况及育种方法探讨[J]. 玉米科学, 2006, 14(2): 33-34, 39.
[13]陆大雷,郭换粉,董策,等. 普通、甜、糯玉米果穗不同部位籽粒淀粉理化特性和颗粒分布差异[J]. 作物学报, 2011, 37(2): 331-338. 
[14]陆大雷,郭换粉,陆卫平. 播期、品种和拔节期追氮量对糯玉米淀粉粒分布的影响[J]. 中国农业科学, 2011, 44(2): 263-270. 
[15]PENG M, GAO M, ABDEL-AAL E S M, et al. Separation and characterization of A- and B-type starch granules in wheat endosperm[J]. Cereal Chemistry, 1999, 76(3): 375-379. 
[16]MALOUF R B, HOSENEY R C. Wheat hardness: I. A method to measure endosperm tensile strength using tablets made from wheat flour[J]. Cereal Chemistry, 1992, 69(2): 164-168. 
[17]石德杨,张海艳,董树亭. 补充灌溉和施氮对玉米籽粒淀粉粒粒度分布的影响[J]. 中国农业科学, 2014, 47(4): 633-643. 
[18]EVERS A D, LINDLEY J. The particle-size distribution in wheat endosperm starch[J]. Journal of the Science of Food and Agriculture, 1977, 28(1): 98-102. 
[19]张丽,张吉旺,刘鹏,等. 不同淀粉含量玉米籽粒淀粉粒度分布特性[J]. 中国农业科学, 2011, 44(8): 1596-1602.
[20]RUB G U, EDITH A, ANA P B R, et al. Physicochemical and enzyme characterization of small and large starch granules isolated from two maize cultivars[J]. Cereal Chemistry, 2010, 87(1): 50-56. 
[21]JI Y, SEETHARAMAN K, WONG K L, et al. Thermal and structure properties of unusual starches from developmental corn lines[J]. Carbohydrate Polymers, 2003, 51(4): 439-450. 
[22]PARK S, WILSON J D, SEABOURN B W. Starch granule size distribution of hard red winter and hard red spring wheat: Its effects on mixing and breadmaking quality[J]. Journal of Cereal Science, 2009, 49(1): 98-105. 
[23]STODDARD F L. Survey of starch particle-size distribution in wheat and related species[J]. Cereal Chemistry, 1999, 76(1): 145-149. 
[24]CHOJECKI A J S, GALE M D, BAYLISS M W. The number and sizes of starch granules in the wheat endosperm, and their association with grain weight[J]. Annals of Botany, 1986, 58(6): 819-831.
[25]荆彦平,李栋梁,刘大同,等. 两个玉米品种胚乳发育的比较[J]. 玉米科学, 2014, 22(1): 79-85. 
[26]WANG Z, GU Y J, HIRASAWA T, et al. Comparison of caryopsis development between two rice varieties with remarkable difference in grain weights[J]. Acta Botanica Sinica, 2004, 46(6): 698-710. 
[27]ZHANG C H, JIANG D, LIU F L, et al. Starch granules size distribution in superior and inferior grains of wheat is related to enzyme activities and their gene expressions during grain filling[J]. Journal of Cereal Science, 2010, 51(2): 226-233. 
[28]PENG M, GAO M, BGA M, et al. Starch-branching enzymes preferentially associated with A-type starch granules in wheat endosperm[J]. Plant Physiology, 2000, 124(1): 265-272. 
[29]TYYNEL J, STITT M, LNNEBORG A, et al. Metabolism of starch synthesis in developing grains of the shx shrunken mutant of barley (Hordeum vulgare)[J]. Plant Physiology, 1995, 93(1): 77-84. 
[30]陈江,王燕,黄斌全,等. 不同类型玉米籽粒淀粉积累、相关酶活及基因表达差异分析[J]. 核农学报, 2012, 26(2): 217- 230. 
[31]ZHANG H Y, DONG S T, GAO R Q, et al. Comparison of starch synthesis and related enzyme activities in developing grains among different types of maize[J]. Journal of Plant Physiology and Molecular Biology, 2007, 33 (1): 25-32. 〖ZK)〗〖FL)〗

相似文献/References:

[1]王军,李洪涛,许瀚元,等.糯玉米茎秆穿刺强度的遗传模型分析[J].江苏农业学报,2016,(04):752.[doi:10.3969/j.issn.100-4440.2016.04.006]
 WANG Jun,LI Hong-tao,XU Han-yuan,et al.Analysis of inheritance model for rind penetrometer resistance in waxy maize[J].,2016,(04):752.[doi:10.3969/j.issn.100-4440.2016.04.006]
[2]胡俏强,陆海燕,李炯,等.糯玉米杂交种纯度InDel分子标记鉴定与田间鉴定的相关性分析[J].江苏农业学报,2016,(05):999.[doi:10.3969/j.issn.1000-4440.2016.05.007]
 HU Qiao-qiang,LU Hai-yan,LI Jiong,et al.The relativity between InDel method and field test in purity identification of waxy maize hybrids[J].,2016,(04):999.[doi:10.3969/j.issn.1000-4440.2016.05.007]
[3]谢佳彤,孙丽丹,陈晓曼,等.麻风树JcWRI1基因克隆及功能分析[J].江苏农业学报,2022,38(02):334.[doi:doi:10.3969/j.issn.1000-4440.2022.02.006]
 XIE Jia-tong,SUN Li-dan,CHEN Xiao-man,et al.Cloning and functional analysis of JcWRI1 gene from physic nut[J].,2022,38(04):334.[doi:doi:10.3969/j.issn.1000-4440.2022.02.006]
[4]章慧敏,张舒钰,宋旭东,等.糯玉米茎秆穿刺强度QTL分析与基因组选择[J].江苏农业学报,2024,(07):1191.[doi:doi:10.3969/j.issn.1000-4440.2024.07.005]
 ZHANG Huimin,ZHANG Shuyu,SONG Xudong,et al.QTL analysis and genomic selection of rind penetrometer resistance in waxy maize[J].,2024,(04):1191.[doi:doi:10.3969/j.issn.1000-4440.2024.07.005]

备注/Memo

备注/Memo:
收稿日期:2015-01-10 基金项目:国家自然科学基金项目(31101100);山东省科技发展计划项目(2014GNC111001);山东省农业良种工程泰山学者种业人才团队支撑计划培养对象项目(20140701);作物生物学国家重点实验室开放课题(2013KF05);山东省旱地作物水分高效利用创新团队项目(2012) 作者简介:伊祖涛(1990-),男,山东桓台人,硕士,主要从事玉米品质生理研究。(Tel)053286080447;(E-mail)yizutao1990@126.com 通讯作者:张海艳,(Tel)053286080447;(E-mail)hyzhang608@126.com
更新日期/Last Update: 2015-08-31