[1]王秋君,常志州,王光飞,等.铜绿假单胞菌结合生物熏蒸防控辣椒疫病的效果[J].江苏农业学报,2015,(02):290-297.[doi:10.3969/j.issn.1000-4440.2015.02.011]
 WANG Qiu-jun,CHANG Zhi-zhou,WANG Guang-fei,et al.Integration of Pseudomonas aeruginosa with biofumigation to control phytophthora blight of pepper[J].,2015,(02):290-297.[doi:10.3969/j.issn.1000-4440.2015.02.011]
点击复制

铜绿假单胞菌结合生物熏蒸防控辣椒疫病的效果()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2015年02期
页码:
290-297
栏目:
植物保护
出版日期:
2015-04-30

文章信息/Info

Title:
Integration of Pseudomonas aeruginosa with biofumigation to control phytophthora blight of pepper
作者:
王秋君常志州王光飞马艳
(江苏省农业科学院农业资源与环境研究所,江苏南京210095)
Author(s):
WANG Qiu-junCHANG Zhi-zhouWANG Guang-feiMA Yan
(Institute of Agricultural Resource and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210095, China)
关键词:
生物熏蒸铜绿假单胞菌辣椒疫病疫霉
Keywords:
biofumigationPseudomonas aeruginosaphytophthora blightPhytophthora capsici
分类号:
S436.418.1+9
DOI:
10.3969/j.issn.1000-4440.2015.02.011
文献标志码:
A
摘要:
为找到防治由疫霉菌(Phytophthora capsici)引起的辣椒疫病的有效方法,首先研究了生物熏蒸过程中土壤微生物数量变化。结果发现在生物熏蒸第7 d时,土壤疫霉和真菌数量显著低于不加菜粕病土(对照),分别降低了20%和68%;而细菌和放线菌数量显著高于对照,分别增加了40%和49%;7 d后生物熏蒸处理和对照土壤中疫霉数量逐渐增加,说明生物熏蒸的最佳时间为7 d。为了增强生物熏蒸的防病效果,通过平板试验筛选了1株既可以拮抗辣椒疫霉又可以抵抗由菜粕降解释放的挥发性杀生气体的铜绿假单胞菌,然后将菜粕与铜绿假单胞菌菌株同时施入土壤中进行7 d的生物熏蒸盆栽试验。发现与生物熏蒸处理相比,生物熏蒸结合铜绿假单胞菌处理的土壤中假单胞菌数量显著增加了401%,疫霉菌的数量显著降低了72%,辣椒疫病的发病率降低了8%。表明生物熏蒸结合施用拮抗菌是一种环保的防控辣椒疫病方法。
Abstract:
To find effective ways to prevent phytophthora blight of pepper caused by Phytophthora capsici, the change of soil microbial population during the process of biofumigation was firstly studied. Biofumigation significantly reduced the population of soil P. capsici and fungi by 20% and 68% respectively, and increased the population of soil bacteria and actinobacteria by 40% and 49% respectively after 7 d. The population of P. capsici in biofumigation treatment gradually increased after the 7th day, indicating that the optimal duration for biofumigation is 7 d. An antagonistic Pseudomonas aeruginosa was screened by dish culture, which was not only resistant to volatile and toxic gas from rapeseed meal but also antagonistic to P. capsici. The rapeseed meal and P. aeruginosa strains were applied to soil simultaneously for biofumigation for 7 d. Compared with sole biofumigation treatment, the integration of biofumigation with P. aeruginosa strain significantly increased the population of Pseudomonas by 401% and decreased the population of P. capsici by 72% in soil, which contributed to decreasing disease incidence of phytophthora blight of pepper by 8%. Combining biofumigation with antagonistic microorganism is environmental-friendly to control phytophthora blight of pepper.〖JP〗

参考文献/References:


[1]WANG Q, MA Y, WANG G, et al. Integration of biofumigation with antagonistic microorganism can control Phytophthora blight of pepper plants by regulating soil bacterial community structure [J]. European Journal of Soil Biology, 2014,61: 58-67.
[2]杨春艳,刘飞,吉恒,等.辣椒疫病的傅里叶变换红外光谱研究[J].江苏农业科学,2014,42(6):113-116.
[3]王中武,班德权.6种药剂对辣椒疫病的防治效果比较[J].江苏农业科学,2013,41(6):110-11.
[4]PANE C, SPACCINI R, PICCOLO A, et al. Compost amendments enhance peat suppressiveness to Pythium ultimum, Rhizoctonia solani and Sclerotinia minor [J]. Biological Control, 2011, 56(2): 115-124.
[5]MAZZOLA M, GRANATSTEIN D M, ELFVING D C, et al. Suppression of specific apple root pathogens by Brassica napus seed meal amendment regardless of glucosinolate content [J]. Phytopathology, 2001, 91(7): 673-679.
[6]SARWAR M, KIRKEGAARD J, WONG P, et al. Biofumigation potential of brassicas [J]. Plant and Soil, 1998, 201(1): 103-112.
[7]WALKER J. Crambe and rapeseed meal as soil amendments: nematicidal potential and phytotoxic effects [J]. Crop Protection, 1996, 15(5): 433-437.
[8]〖JP+1〗ANGUS J, GARDNER P, KIRKEGAARD J, et al. Biofumigation: Isothiocyanates released frombrassica roots inhibit growth of the take-all fungus [J]. Plant and Soil, 1994, 162(1): 107-112.〖JP〗
[9]HAAS D, DFAGO G. Biological control of soil-borne pathogens by fluorescent pseudomonads [J]. Nature Reviews Microbiology, 2005, 3(4): 307-319.
[10]TARNAWSKI S, HAMELIN J, LOCATELLI L, et al. Examination of Gould's modified S1 (mS1) selective medium and Angle's non-selective medium for describing the diversity of Pseudomonas spp. in soil and root environments [J]. Fems Microbiology Ecology, 2003, 45(2): 97-104.
[11]SILVAR C, DUNCAN J, COOKE D, et al. Development of specific PCR primers for identification and detection of Phytophthora capsici Leon [J]. European Journal of Plant Pathology, 2005, 112(1): 43-52.
[12]LIOUSSANNE L, PERREAULT F, JOLICOEUR M, et al. The bacterial community of tomato rhizosphere is modified by inoculation with arbuscular mycorrhizal fungi but unaffected by soil enrichment with mycorrhizal root exudates or inoculation with Phytophthora nicotianae [J]. Soil Biology and Biochemistry, 2010, 42(3): 473-483.
[13]LUO J, SHEN Q, RAN W, et al. Application of bio-organic fertilizer significantly affected fungal diversity of soils [J]. Soil Science Society of America Journal, 2010, 74(6): 2039-2048.
[14]LEARN-HAN L, YOKE-KQUEEN C, SHIRAN M, et al. Identification of actinomycete communities in Antarctic soil from Barrientos Island using PCR-denaturing gradient gel electrophoresis [J]. Genetics and Molecular Research, 2012, 11(1): 277-291.
[15]HANSEN Z, KEINATH A. Increased pepper yields following incorporation of biofumigation cover crops and the effects on soilborne pathogen populations and pepper diseases [J]. Applied Soil Ecology, 2013, 63: 67-77.
[16]GABLER F M, MERCIER J, JIMENEZ J, et al. Integration of continuous biofumigation with Muscodor albus with pre-cooling fumigation with ozone or sulfur dioxide to control postharvest gray mold of table grapes [J]. Postharvest Biology and Technology, 2010, 55(2): 78-84.
[17]LU P, GILARDI G, GULLINO M L, et al. Biofumigation with Brassica plants and its effect on the inoculum potential of Fusarium yellows of Brassica crops [J]. European Journal of Plant Pathology, 2010, 126(3): 387-402.
[18]COHEN M, YAMASAKI H, MAZZOLA M. Brassica napus seed meal soil amendment modifies microbial community structure, nitric oxide production and incidence of Rhizoctonia root rot [J]. Soil Biology and Biochemistry, 2005, 37(7): 1215-1227.
[19]蒋小芳,罗佳,黄启为,等. 不同原料堆肥的有机无机复混肥对辣椒产量和土壤生物性状的影响 [J]. 植物营养与肥料学报, 2008, 14(4): 766-773.
[20]ZHAO Q, DONG C, YANG X, et al. Biocontrol of Fusarium wilt disease for Cucumis melo melon using bio-organic fertilizer [J]. Applied Soil Ecology, 2011, 47(1): 67-75.
[21]GOBBIN D, REZZONICO F, GESSLER C. Quantification of the biocontrol agent Pseudomonas fluorescens Pf153 in soil using a quantitative competitive PCR assay unaffected by variability in cell lysis-and DNA-extraction efficiency [J]. Soil Biology and Biochemistry, 2007, 39(7): 1609-1619.
[22]ZAITLIN B, TURKINGTON K, PARKINSON D, et al. Effects of tillage and inorganic fertilizers on culturable soil actinomycete communities and inhibion of fungi by specific actinomycetes [J]. Applied Soil Ecology, 2004, 26(1): 53-62.
[23]OMIROU M, ROUSIDOU C, BEKRIS F, et al. The impact of biofumigation and chemical fumigation methods on the structure and function of the soil microbial community [J]. Microbial Ecology, 2011, 61(1): 201-213.
[24]ALMARIO J, MONNE-LOCCOZ Y, MULLER D. Monitoring of the relation between 2, 4-diacetylphloroglucinol-producing Pseudomonas and Thielaviopsis basicola populations by real-time PCR in tobacco black root-rot suppressive and conducive soils [J]. Soil Biology and Biochemistry, 2012,57: 144-155.
[25]SVERCEL M, HAMELIN J, DUFFY B, et al. Distribution of Pseudomonas populations harboring phlD or hcnAB biocontrol genes is related to depth in vineyard soils [J]. Soil Biology and Biochemistry, 2010, 42(3): 466-472.
[26]胡军华,张伏军,蓝希钳,等. 烟草根际细菌铜绿假单胞菌 swu31-2 的定殖能力及其对烟草青枯病的防治作用 [J]. 植物保护, 2009(5): 89-94.
[27]郝晓娟,刘波,谢关林,等. 铜绿假单胞菌 FJAT-346 对番茄枯萎病的生防作用 [J]. 山西农业大学学报: 自然科学版, 2011, 31(1): 39-43.
[28]HOLTZE M S, NIELSEN P, EKELUND F, et al. Mercury affects the distribution of culturable species of Pseudomonas in soil [J]. Applied Soil Ecology, 2006, 31(3): 228-238.
[29]MEW T, ROSALES A. Bacterization of rice plants for control of sheath blight caused by Rhizoctonia solani [J]. Phytopathology, 1986, 76(11): 1260-1264.
[30]〖JP3〗VAN VEEN J A, VAN OVERBEEK L S, VAN ELSAS J D. Fate and activity of microorganisms introduced into soil [J]. Microbiology and Molecular Biology Reviews, 1997, 61(2): 121-135.〖JP〗
[31]QIU M, ZHANG R, XUE C, et al. Application of bio-organic fertilizer can control Fusarium wilt of cucumber plants by regulating microbial community of rhizosphere soil [J]. Biology and Fertility of Soils, 2012,48: 807-816.
[32]ZHANG N, WU K, HE X, et al. A new bioorganic fertilizer can effectively control banana wilt by strong colonization with Bacillus subtilis N11 [J]. Plant and Soil, 2011, 344(1): 87-97.
[33]ZHAO Q, SHEN Q, RAN W, et al. Inoculation of soil by Bacillus subtilis Y-IVI improves plant growth and colonization of the rhizosphere and interior tissues of muskmelon (Cucumis melo L.) [J]. Biology and Fertility of Soils, 2011,47: 507-514.
[34]WEI Z, YANG X, YIN S, et al. Efficacy of Bacillus-fortified organic fertiliser in controlling bacterial wilt of tomato in the field [J]. Applied Soil Ecology, 2011,48: 152-159.
[35]SARAVANAN T, MUTHUSAMY M, MARIMUTHU T. Development of integrated approach to manage the fusarial wilt of banana [J]. Crop Protection, 2003, 22(9): 1117-1123.〖ZK)〗〖FL)〗

备注/Memo

备注/Memo:
收稿日期:2014-08-30 基金项目:江苏省科技厅支撑计划项目(BE2012379);江苏省农业科技自主创新基金项目[CX(12)1004-6] 作者简介:王秋君(1983-),男,山西运城人,博士,助理研究员,主要研究方向为土壤微生物群落结构的调控。(Tel) 025-84391251;(E-mail) wangqiujun461@163.com 通讯作者:马艳,(E-mail)myjaas@sina.com
更新日期/Last Update: 2015-04-30