[1]徐文龙,张志杨,庄林林,等.无机纳米酶在增强作物抗非生物胁迫中的应用研究进展[J].江苏农业学报,2023,(09):1945-1960.[doi:doi:10.3969/j.issn.1000-4440.2023.09.017]
 XU Wen-long,ZHANG Zhi-yang,ZHUANG Lin-lin,et al.Research progress on the application of inorganic nanozymes in enhancing crop resistance to abiotic stress[J].,2023,(09):1945-1960.[doi:doi:10.3969/j.issn.1000-4440.2023.09.017]
点击复制

无机纳米酶在增强作物抗非生物胁迫中的应用研究进展()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年09期
页码:
1945-1960
栏目:
综述
出版日期:
2023-12-31

文章信息/Info

Title:
Research progress on the application of inorganic nanozymes in enhancing crop resistance to abiotic stress
作者:
徐文龙12张志杨12庄林林3陈赛男12丁子萱14冯迎辰15肖清波1245
(1.江苏省农业科学院农业资源与环境研究所,江苏南京210014;2.农业农村部盐碱土改良与利用(滨海盐碱地)重点实验室,江苏南京210014;3.江苏农林职业技术学院畜牧兽医学院,江苏镇江212400;4.江苏大学环境与安全工程学院,江苏镇江212013;5.南京信息工程大学应用气象学院,江苏南京210044)
Author(s):
XU Wen-long12ZHANG Zhi-yang12ZHUANG Lin-lin3CHEN Sai-nan12DING Zi-xuan14FENG Ying-chen15XIAO Qing-bo1245
(1.Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;2.Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Nanjing 210014, China;3.College of Animal Science and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang 212400, China;4.College of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China;5.School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China)
关键词:
无机纳米酶非生物胁迫作物植物纳米生物学抗逆性
Keywords:
inorganic nanozymesabiotic stresscropsplant nanobiologystress resistance
分类号:
S183
DOI:
doi:10.3969/j.issn.1000-4440.2023.09.017
文献标志码:
A
摘要:
自然环境、地域差异以及人类活动等引起的非生物胁迫严重影响作物产量。无机纳米酶是由中国科学家提出的一类新型纳米催化材料,具有模拟甚至超越天然酶的功能,可在一定条件下遵循酶促反应动力学催化转化底物分子。近年来,随着植物纳米生物学的发展,无机纳米酶由于能够显著缓解作物因盐渍、旱涝、重金属等逆境引发的非生物胁迫而引起研究者的关注。本文梳理了无机纳米酶在缓解作物非生物胁迫方面的研究进展,阐述了其相关作用机制。具体地,归纳了施加方式对提高作物抵御非生物胁迫能力的影响,分析了无机纳米酶的材料种类与设计原则,总结了各方法的优缺点,并对目前无机纳米酶在农业生产应用中需解决的问题进行了展望。
Abstract:
Abiotic stresses caused by natural environment, regional differences and human activities seriously affect crop yield. Inorganic nanozyme is a new class of nano catalyst proposed by Chinese scientists, which has the function of simulating or even surpassing the natural enzymes. It can catalyze the transformation of substrate molecules under certain conditions and follow the typical enzymatic reaction kinetics. With the development of plant nanobiology in recent years, as a new generation of artificial simulated enzymes, inorganic nanozymes can significantly promote the abiotic stress resistance under salinity, drought, flood, heavy metals, and other adverse environment to crops growth. In this review, we discussed the research progress of inorganic nanozymes in alleviating crop abiotic stress, and expounded the related mechanism. The different exerting methods, as well as the working principle and mechanism of the selection and design of inorganic nanozymes, were summarized. With the analysis of the pros and cons, this paper aimed to provide a comprehensive understanding for the relevant studies in nanozyme domain. Finally, the problems to be solved in the application of inorganic nanozymes in agricultural production were also prospected according to the current research status.

参考文献/References:

[1]ZHANG H M, ZHU J H, GONG Z Z, et al. Abiotic stress responses in plants[J]. Nature Reviews Genetics,2022,23(2):104-119.
[2]BECHTOLD U, FIELD B. Molecular mechanisms controlling plant growth during abiotic stress[J]. Journal of Experimental Botany,2018,69(11):2753-2758.
[3]LIU J, FU C, LI G, et al. ROS homeostasis and plant salt tolerance: plant nanobiotechnology updates[J]. Sustainability,2021,13(6):3552.
[4]ZHAO L, LU L, WANG A, et al. Nano-biotechnology in agriculture: use of nanomaterials to promote plant growth and stress tolerance[J]. Journal of Agricultural and Food Chemistry,2020,68(7):1935-1947.
[5]朱立祺,陈菲然,陶梦娜,等. 人工纳米材料增强植物耐盐性的机理研究[J]. 环境科学研究, 2022,35(8):1759-1768.
[6]ZHOU H, WU H, ZHANG F, et al. Molecular basis of cerium oxide nanoparticle enhancement of rice salt tolerance and yield[J]. Environmental Science: Nano,2021,8(11):3294-3311.
[7]ZHAO L, BAI T, WEI H, et al. Nanobiotechnology-based strategies for enhanced crop stress resilience[J]. Nature Food,2022,3(10):829-836.
[8]高利增,陈雷,张若飞,等. 纳米酶: 新一代人工酶[J]. 中国科学:化学,2022,52(9):1649-1663.
[9]MANEA F, HOUILLON F B, PASQUATO L, et al. Nanozymes: gold-nanoparticle-based transphosphorylation catalysts[J]. Angewandte Chemie-International Edition,2004,43(45):6165-6169.
[10]JIANG D, NI D, ROSENKRANS Z T, et al. Nanozyme: new horizons for responsive biomedical applications[J]. Chemical Society Reviews,2019,48(14):3683-3704.
[11]GAO L, ZHUANG J, NIE L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles[J]. Nature Nanotechnology,2007,2(9):577-583.
[12]HUANG Y, REN J, QU X. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications[J]. Chemical Reviews,2019,119(6):4357-4412.
[13]ZHANG R, YAN X, FAN K. Nanozymes inspired by natural enzymes[J]. Accounts of Materials Research,2021,2(7):534-547.
[14]尤沛,何学青. 种子纳米引发的研究进展[J]. 草业科学,2020,37(8):1548-1557.
[15]WU H, SHABALA L, SHABALA S, et al. Hydroxyl radical scavenging by cerium oxide nanoparticles improves Arabidopsis salinity tolerance by enhancing leaf mesophyll potassium retention[J]. Environmental Science: Nano,2018,5(7):1567-1583.
[16]WU H, TITO N, GIRALDO J P. Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species[J]. ACS Nano,2017,11(11):11283-11297.
[17]LIU J, LI G, CHEN L, et al. Cerium oxide nanoparticles improve cotton salt tolerance by enabling better ability to maintain cytosolic K+/Na+ ratio[J]. Journal of Nanobiotechnology,2021,19(1):153.
[18]KHAN M N, LI Y, FU C, et al. CeO2 nanoparticles seed priming increases salicylic acid level and ros scavenging ability to improve rapeseed salt tolerance[J]. Global Challanges,2022,6(7):2200025.
[19]MITTLER R, ZANDALINAS S I, FICHMAN Y, et al. Reactive oxygen species signalling in plant stress responses[J]. Nature Reviews Molecular Cell Biology,2022,23(10):663-679.
[20]XU L, ZHU Z, SUN D W. Bioinspired nanomodification strategies: moving from chemical-based agrosystems to sustainable agriculture[J]. ACS Nano,2021,15(8):12655-12686.
[21]BANERJEE A, ROYCHOUDHURY A. Maghemite nano-fertilization promotes fluoride tolerance in rice by restoring grain yield and modulating the ionome and physiome[J]. Ecotoxicology and Environmental Safety,2021,215:112055.
[22]NILE S H, THIRUVENGADAM M, WANG Y, et al. Nano-priming as emerging seed priming technology for sustainable agriculture-recent developments and future perspectives[J]. Journal of Nanobiotechnology,2022,20(1):254.
[23]KANDHOL N, SINGH V P, RAMAWAT N, et al. Nano-priming: Impression on the beginner of plant life[J]. Plant Stress,2022,5:100091.
[24]SCOTT S, ZHAO H, DEY A, et al. Nano-apples and orange-zymes[J]. ACS Catalysis,2020,10(23):14315-14317.
[25]CHEN L, PENG Y, ZHU L, et al. CeO2 nanoparticles improved cucumber salt tolerance is associated with its induced early stimulation on antioxidant system[J]. Chemosphere,2022,299:134474.
[26]LI Y, LIU J, FU C, et al. CeO2 nanoparticles modulate Cu-Zn superoxide dismutase and lipoxygenase-IV isozyme activities to alleviate membrane oxidative damage to improve rapeseed salt tolerance[J]. Environmental Science: Nano,2022,9(3):1116-1132.
[27]LU L, HUANG M, HUANG Y X, et al. Mn3O4 nanozymes boost endogenous antioxidant metabolites in cucumber (Cucumis sativus) plant and enhance resistance to salinity stress[J]. Environmental Science: Nano,2020,7(6):1692-1703.
[28]SONAWANE H, ARYA S, MATH S, et al. Myco-synthesized silver and titanium oxide nanoparticles as seed priming agents to promote seed germination and seedling growth of Solanum lycopersicum: a comparative study[J]. International Nano Letters,2021,11(4):371-379.
[29]MAHAKHAM W, THEERAKULPISUT P, MAENSIRI S, et al. Environmentally benign synthesis of phytochemicals-capped gold nanoparticles as nanopriming agent for promoting maize seed germination[J]. Science of the Total Environment,2016,573:1089-1102.
[30]KHAN N, BANO A. Role of plant growth promoting rhizobacteria and Ag-nano particle in the bioremediation of heavy metals and maize growth under municipal wastewater irrigation[J]. International Journal of Phytoremediation,2016,18(3):211-221.
[31]YAN X, PAN Z Y, CHEN S, et al. Rice exposure to silver nanoparticles in a life cycle study: effect of dose responses on grain metabolomic profile, yield, and soil bacteria[J]. Environmental Science: Nano,2022,9(6):2195-2206.
[32]GONG X, HUANG D, LIU Y, et al. Roles of multiwall carbon nanotubes in phytoremediation: cadmium uptake and oxidative burst in Boehmeria nivea (L.) Gaudich[J]. Environmental Science: Nano,2019,6(3):851-862.
[33]CHEN J L, ZENG X Y, YANG W J, et al. Seed priming with multiwall carbon nanotubes (MWCNTs) modulates seed germination and early growth of maize under cadmium (Cd) toxicity[J]. Journal of Soil Science and Plant Nutrition,2021,21(3):1793-1805.
[34]CHEN Z, NIU J, GUO Z, et al. Graphene enhances photosynthesis and the antioxidative defense system and alleviates salinity and alkalinity stresses in alfalfa (Medicago sativa L.) by regulating gene expression[J]. Environmental Science: Nano,2021,8(9):2731-2748.
[35]LIU Q, ZHANG A, WANG R, et al. A review on metal- and metal oxide-based nanozymes: properties, mechanisms, and applications[J]. Nano-Micro Letters,2021,13(1):154.
[36]TANAKA S, MASUD M K, KANETI Y V, et al. Enhanced peroxidase mimetic activity of porous iron oxide nanoflakes[J]. ChemNanoMat,2019,5(4):506-513.
[37]MAZHAR M W, ISHTIAQ M, MAQBOOL M, et al. Seed priming with iron oxide nanoparticles raises biomass production and agronomic profile of water-stressed flax plants[J]. Agronomy,2022,12(5):982.
[38]TOMBULOGLU H, SLIMANI Y, TOMBULOGLU G, et al. Uptake and translocation of magnetite (Fe3O4) nanoparticles and its impact on photosynthetic genes in barley (Hordeum vulgare L.)[J]. Chemosphere,2019,226:110-122.
[39]PALMQVIST N G M, SEISENBAEVA G A, SVEDLINDH P, et al. Maghemite nanoparticles acts as nanozymes, improving growth and abiotic stress tolerance in Brassica napus[J]. Nanoscale Research Letters,2017,12:631.
[40]PRERNA D I, GOVINDARAJU K, TAMILSELVAN S, et al. Influence of nanoscale micro-nutrient α-Fe2O3 on seed germination, seedling growth, translocation, physiological effects and yield of rice (Oryza sativa) and maize (Zea mays)[J]. Plant Physiology and Biochemistry,2021,162:564-580.
[41]CELARDO I, PEDERSEN J Z, TRAVERSA E, et al. Pharmacological potential of cerium oxide nanoparticles [J]. Nanoscale,2011,3(4):1411-1420.
[42]KHAN M N, LI Y, KHAN Z, et al. Nanoceria seed priming enhanced salt tolerance in rapeseed through modulating ROS homeostasis and α-amylase activities[J]. Journal of Nanobiotechnology,2021,19(1):276.
[43]贾丹彤,叶倩如,刘扬,等. 纳米氧化铈的长期生物效应评估 [J]. 稀土,2022,43(2):120-127.
[44]YE Y Q, COTA-RUIZ K, HERNANDEZ-VIEZCAS J A, et al. Manganese nanoparticles control salinity-modulated molecular responses in Capsicum annuum L. through priming: a sustainable approach for agriculture[J]. ACS Sustainable Chemistry & Engineering,2020,8(3):1427-1436.
[45]方清,晏士玮,崔彩云,等. 纳米氧化铜对砷胁迫下水稻种子发芽及幼苗生长的影响[J]. 安徽农业大学学报,2020,47(5):826-831.
[46]NOOR R, YASMIN H, ILYAS N, et al. Comparative analysis of iron oxide nanoparticles synthesized from ginger (Zingiber officinale) and cumin seeds (Cuminum cyminum) to induce resistance in wheat against drought stress[J]. Chemosphere,2022,292:133201.
[47]党芳芳,冯文新,尹美强,等. 硅钙肥与纳米碳对干旱胁迫下小麦幼苗形态及生理的影响[J]. 山西农业大学学报(自然科学版),2017,37(3):164-168.
[48]MASWADA H F, DJANAGUIRAMAN M, PRASAD P V V. Seed treatment with nano-iron (III) oxide enhances germination, seeding growth and salinity tolerance of sorghum[J]. Journal of Agronomy and Crop Science,2018,204(6):577-587.
[49]BORISEV M, BORISEV I, ZUPUNSKI M, et al. Drought impact is alleviated in sugar beets (Beta vulgaris L.) by foliar application of fullerenol nanoparticles[J]. PLoS One,2016,11(11):e0166248.
[50]LI Y J, LI W, YANG X, et al. Salvia miltiorrhiza-derived carbon dots as scavengers of reactive oxygen species for reducing oxidative damage of plants[J]. ACS Applied Nano Materials,2021,4(1):113-120.
[51]薛斌龙,胡晓飞,姚建忠,等. 氧化石墨烯对盐胁迫下树莓组培苗生长及生理特征的影响[J]. 山东林业科技,2019(4):23-28.
[52]AN J, HU P, LI F, et al. Emerging investigator series: molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles[J]. Environmental Science: Nano,2020,7(8):2214-2228.
[53]ZHENG X F, LIAN Q, ZHOU L Y, et al. Peroxidase mimicking of binary polyacrylonitrile-CuO nanoflowers and the application in colorimetric detection of H2O2 and ascorbic acid[J]. ACS Sustainable Chemistry & Engineering,2021,9(20):7030-7043.
[54]TRUJILLO-REYES J, MAJUMDAR S, BOTEZ C E, et al. Exposure studies of core-shell Fe/Fe3O4 and Cu/CuO NPs to lettuce (Lactuca sativa) plants: are they a potential physiological and nutritional hazard?[J]. Journal of Hazardous Materials,2014,267:255-263.
[55]ZHANG H L, DU W C, PERALTA-VIDEA J R, et al. Metabolomics reveals how cucumber (Cucumis sativus) reprograms metabolites to cope with silver ions and silver nanoparticle-induced oxidative stress[J]. Environmental Science & Technology,2018,52(14):8016-8026.
[56]LIU Y, XIAO Z, CHEN F, et al. Metallic oxide nanomaterials act as antioxidant nanozymes in higher plants: trends, meta-analysis, and prospect[J]. Science of the Total Environment,2021,780:146578.
[57]MA W, XUE Y, GUO S, et al. Graphdiyne oxide: a new carbon nanozyme[J]. Chemical Communications,2020,56(38):5115-5118.
[58]LI Y, TANG Z, PAN Z, et al. Calcium-Mobilizing properties of Salvia miltiorrhiza-derived carbon dots confer enhanced environmental adaptability in plants[J]. ACS Nano,2022,16(3):4357-4370.
[59]SONG Y, QU K, ZHAO C, et al. Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection[J]. Advanced Materials,2010,22(19):2206-2210.
[60]WU J, WANG X, WANG Q, et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II)[J]. Chemical Society Reviews,2019,48(4):1004-1076.
[61]ZHAO D Q, FANG Z W, TANG Y H, et al. Graphene oxide as an effective soil water retention agent can confer drought stress tolerance to Paeonia ostii without toxicity[J]. Environmental Science & Technology,2020,54(13):8269-8279.
[62]ZHANG H, VIDONISH J, LYU W, et al. Differential histological, cellular and organism-wide response of earthworms exposed to multi-layer graphenes with different morphologies and hydrophobicity[J]. Environmental Pollution,2020,263:114468.
[63]BAUGHMAN R H, ZAKHIDOV A A, DE HEER W A. Carbon nanotubes—the route toward applications[J]. Science,2002,297(5582):787-792.
[64]GONZALEZ-GARCIA Y, LOPEZ-VARGAS E R, CADENAS-PLIEGO G, et al. Impact of carbon nanomaterials on the antioxidant system of tomato seedlings[J]. International Journal of Molecular Sciences,2019,20(23):15.
[65]LI Z Q, ZHU L, ZHAO F M, et al. Plant salinity stress response and nano-enabled plant salt tolerance[J]. Frontiers in Plant Science,2022,13:843994.
[66]GONG X M, HUANG D L, LIU Y G, et al. Nanoscale zerovalent iron, carbon nanotubes and biochar facilitated the phytoremediation of cadmium contaminated sediments by changing cadmium fractions, sediments properties and bacterial community structure [J]. Ecotoxicology and Environmental Safety,2021,208:111510.
[67]MU X, WANG J, HE H, et al. An oligomeric semiconducting nanozyme with ultrafast electron transfers alleviates acute brain injury[J]. Science Advances,2021,7(46):1210.
[68]刘振玲,李亚伟,杨涵越. 碳点促进作物种子萌发及生长的机制研究[J]. 安徽农业科学,2021,49(24):1-5,17.
[69]CHINNUSAMY V, ZHU J, ZHU J K. Cold stress regulation of gene expression in plants[J]. Trends in Plant Science,2007,12(10):444-451.
[70]HUANG Q, LIU Q, LIN L, et al. Reduction of arsenic toxicity in two rice cultivar seedlings by different nanoparticles[J]. Ecotoxicology and Environmental Safety,2018,159:261-271.
[71]SEKMEN CETINEL A H, YALCINKAYA T, AKYOL T Y, et al. Pretreatment of seeds with hydrogen peroxide improves deep-sowing tolerance of wheat seedlings[J]. Plant Physiology and Biochemistryem,2021,167:321-336.
[72]NAZIR F, FARIDUDDIN Q, KHAN T A. Hydrogen peroxide as a signalling molecule in plants and its crosstalk with other plant growth regulators under heavy metal stress[J]. Chemosphere,2020,252:126486.
[73]APEL K, HIRT H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology,2004,55:373-399.
[74]HE J, JI Z X, WANG Q Z. Effect of Cu and Pb pollution on the growth and antionxidant enzyme activity of Suaeda heteroptera[J]. Ecological Engineering,2016,87:102-109.
[75]武江洁星,魏辉. 浅谈纳米酶的高效设计策略[J]. 化学进展,2021,33(1):42-51.
[76]SINGH N, SAVANUR M A, SRIVASTAVA S, et al. A redox modulatory Mn3O4 nanozyme with multi-enzyme activity provides efficient cytoprotection to human cells in a Parkinson’s disease model[J]. Angewandte Chemie-International Edition,2017,56(45):14267-14271.
[77]TUMBURU L, ANDERSEN C P, RYGIEWICZ P T, et al. Molecular and physiological responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis[J]. Environmental Toxicology and Chemistry,2017,36(1):71-82.
[78]DEMIDCHIK V, MAATHUIS F J M. Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development[J]. New Phytologist,2007,175(3):387-404.
[79]SHAH T, LATIF S, SAEED F, et al. Seed priming with titanium dioxide nanoparticles enhances seed vigor, leaf water status, and antioxidant enzyme activities in maize (Zea mays L.) under salinity stress[J]. Journal of King Saud University Science,2021,33(1):101207.
[80]AFZAL S, SHARMA D, SINGH N K. Eco-friendly synthesis of phytochemical-capped iron oxide nanoparticles as nano-priming agent for boosting seed germination in rice (Oryza sativa L.)[J]. Environmental Science and Pollution Research,2021,28(30):40275-40287.
[81]ROKONUZZAMAN M, LI W C, MAN Y B, et al. Arsenic accumulation in rice: sources, human health impact and probable mitigation approaches[J]. Rice Science,2022,29(4):309-327.
[82]SAVASSA S M, DURAN N M, RODRIGUES E S, et al. Effects of ZnO nanoparticles on Phaseolus vulgaris germination and seedling development determined by X-ray spectroscopy[J]. ACS Applied Nano Materials,2018,1(11):6414-6426.
[83]AVELLAN A, YUN J, ZHANG Y, et al. Nanoparticle size and coating chemistry control foliar uptake pathways, translocation, and leaf-to-rhizosphere transport in wheat[J]. ACS Nano,2019,13(5):5291-5305.
[84]AZIMI S M, EISVAND H R, ISMAILI A, et al. Effect of gibberellin, nano-nutrition with titanium, zinc and iron on yield and some physiological and qualitative traits of white beans[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca,2022,50(1):12538.
[85]SPIELMAN-SUN E, LOMBI E, DONNER E, et al. Impact of surface charge on cerium oxide nanoparticle uptake and translocation by wheat (Triticum aestivum)[J]. Environmental Science & Technology,2017,51(13):7361-7368.
[86]DJANAGUIRAMAN M, NAIR R, GIRALDO J P, et al. Cerium oxide nanoparticles decrease drought-induced oxidative damage in sorghum leading to higher photosynthesis and grain yield[J]. ACS Omega,2018,3(10):14406-14416.
[87]董海姣,张弛,范瑶瑶,等. 纳米酶及其细胞活性氧调控[J]. 生物化学与生物物理进展,2018,45(2):105-117.
[88]WANG P, LOMBI E, ZHAO F J, et al. Nanotechnology: a new opportunity in plant sciences[J]. Trends in Plant Science,2016,21(8):699-712.
[89]WONG M H, MISRA R P, GIRALDO J P, et al. Lipid exchange envelope penetration (LEEP) of nanoparticles for plant engineering: a universal localization mechanism[J]. Nano Letters,2016,16(2):1161-1172.

相似文献/References:

[1]马娜,王金彦,阚家亮,等.一个响应盐胁迫的梨凝集素受体蛋白激酶PcLRLK066 的功能分析[J].江苏农业学报,2017,(02):404.[doi:doi:10.3969/j.issn.1000-4440.2017.02.026]
 MA Na,WANG Jin-yan,KAN Jia-liang,et al.Functional analysis of a salt-induced lectin receptor-like kinase PcLRLK066 of pear[J].,2017,(09):404.[doi:doi:10.3969/j.issn.1000-4440.2017.02.026]
[2]沈丹,杨莉,胡威,等.柑橘胁迫响应基因WRKY47的克隆与表达分析[J].江苏农业学报,2021,(01):129.[doi:doi:10.3969/j.issn.1000-4440.2021.01.017]
 SHEN Dan,YANG Li,HU Wei,et al.Cloning and expression analysis of stress response gene WRKY47 in citrus[J].,2021,(09):129.[doi:doi:10.3969/j.issn.1000-4440.2021.01.017]
[3]董勤勇,张圆圆,魏景芳,等.MYB转录因子在水稻抗逆基因工程中的研究进展[J].江苏农业学报,2021,(02):525.[doi:doi:10.3969/j.issn.1000-4440.2021.02.031]
 DONG Qin-yong,ZHANG Yuan-yuan,WEI Jing-fang,et al.Research progress of MYB transcription factor in stress-resistant genetic engineering of rice[J].,2021,(09):525.[doi:doi:10.3969/j.issn.1000-4440.2021.02.031]
[4]王会文,范军强,路晓明,等.白菜型冬油菜NAC基因家族鉴定及表达分析[J].江苏农业学报,2022,38(05):1315.[doi:doi:10.3969/j.issn.1000-4440.2022.05.019]
 WANG Hui-wen,FAN Jun-qiang,LU Xiao-ming,et al.Identification and expression analysis of NAC gene family in Brassica rapa L.[J].,2022,38(09):1315.[doi:doi:10.3969/j.issn.1000-4440.2022.05.019]
[5]李想,冯建英,鲁黎明,等.马铃薯bZIP家族的鉴定与表达分析[J].江苏农业学报,2022,38(06):1453.[doi:doi:10.3969/j.issn.1000-4440.2022.06.002]
 LI Xiang,FENG Jian-ying,LU Li-ming,et al.Identification and expression analysis of bZIP family in potato[J].,2022,38(09):1453.[doi:doi:10.3969/j.issn.1000-4440.2022.06.002]
[6]于海伟,李铭杨,张军,等.大豆GmNCED1-2的非生物胁迫诱导表达及其转基因烟草鉴定[J].江苏农业学报,2023,(04):931.[doi:doi:10.3969/j.issn.1000-4440.2023.04.002]
 YU Hai-wei,LI Ming-yang,ZHANG Jun,et al.Expression of soybean GmNCED1-2 induced by abiotic stress and the identification of GmNCED1-2 transgenic tobacco[J].,2023,(09):931.[doi:doi:10.3969/j.issn.1000-4440.2023.04.002]
[7]曾坚,王舒婷,周洁薇,等.粉蕉PAL家族基因的鉴定及其在逆境胁迫下的表达分析[J].江苏农业学报,2023,(06):1286.[doi:doi:10.3969/j.issn.1000-4440.2023.06.003]
 ZENG Jian,WANG Shu-ting,ZHOU Jie-wei,et al.Identification of PAL family genes in Pisang Awak and their expression analysis under stress conditions[J].,2023,(09):1286.[doi:doi:10.3969/j.issn.1000-4440.2023.06.003]

备注/Memo

备注/Memo:
收稿日期:2022-10-30基金项目:国家自然科学基金项目(22078136);江苏省农业科学院探索性颠覆性创新计划项目[ZX(21)1222]作者简介:徐文龙(1989-),男,江苏南京人,博士,助理研究员,主要从事新型农业纳米酶的设计与研究。(E-mail)wlxu@jaas.ac.cn通讯作者:肖清波,(E-mail)qbxiao@jaas.ac.cn
更新日期/Last Update: 2024-01-15