[1]李辉平,骆昕,侯子强,等.基于BSA-seq技术挖掘糙皮侧耳抗螨候选基因[J].江苏农业学报,2022,38(06):1648-1656.[doi:doi:10.3969/j.issn.1000-4440.2022.06.024]
 LI Hui-ping,LUO Xin,HOU Zi-qiang,et al.Candidate anti-mite gene detection by BSA-seq in Pleurotus ostreatus[J].,2022,38(06):1648-1656.[doi:doi:10.3969/j.issn.1000-4440.2022.06.024]
点击复制

基于BSA-seq技术挖掘糙皮侧耳抗螨候选基因()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年06期
页码:
1648-1656
栏目:
园艺
出版日期:
2022-12-31

文章信息/Info

Title:
Candidate anti-mite gene detection by BSA-seq in Pleurotus ostreatus
作者:
李辉平1骆昕1侯子强2蒋宁1林金盛1侯立娟1徐平1马林1曲绍轩12
(1.江苏省农业科学院蔬菜研究所,江苏省高效园艺作物遗传改良重点实验室,江苏南京210014;2.江苏大学生命科学学院,江苏镇江212013)
Author(s):
LI Hui-ping1LUO Xin1HOU Zi-qiang2JIANG Ning1LIN Jin-sheng1HOU Li-juan1XU Ping1MA Lin1QU Shao-xuan12
(1.Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;2.School of Life Sciences, Jiangsu University, Zhenjiang 212013, China)
关键词:
糙皮侧耳(平菇)抗螨候选基因群体分离分析法
Keywords:
Pleurotus ostreatus (oyster mushroom)candidate anti-mite genesbulked segregant analysis
分类号:
S646.1+41
DOI:
doi:10.3969/j.issn.1000-4440.2022.06.024
文献标志码:
A
摘要:
根据前期不同糙皮侧耳菌株抗螨性差异调查结果,构建了糙皮侧耳孢子单核体群体,群体内479个菌株抗螨性呈正态分布。利用BSA-seq技术对高抗和高感混池进行SNP和InDel位点的欧氏距离关联分析,将抗螨性候选基因定位到一条染色体上,2个相邻候选区域总长度为1.75 Mb,内有基因605个,其中非同义突变基因353个,移码突变基因89个。经功能注释以及GO和KEGG通路富集等分析,发现26个候选基因参与了信号传导、防御过程和次级代谢相关通路,推测这些候选基因可能与糙皮侧耳抗螨性相关。
Abstract:
In our previous study, it was found that there were significant differences in the resistance to Tyrophagus putrescentiae among different strains of Pleurotus ostreatus. In this study, firstly, a spore monokaryotic population of P. ostreatus was rapidly constructed, and the 479 strains within the population were normally distributed for mite resistance. Secondly, the Euclidean distance association analysis of SNP and InDel sites was performed between the highly resistant and highly sensitive pools using BSA-seq technology. The candidate genes for mite resistance were located on one chromosome. The two adjacent candidate regions had a total length of 1.75 Mb and contained 605 genes, including 353 non-synonymous and 89 frameshift mutated genes. Finally, after functional annotation, GO and KEGG pathway enrichment analysis, 26 candidate genes were found to be involved in signal transduction, defense processes and secondary metabolism-related pathways. It was thus inferred that these candidate genes might be related to mite resistance.

参考文献/References:

[1]SANCHEZ C. Cultivation of Pleurotus ostreatus and other edible mushrooms[J]. Appl Microbiol Biotechnol, 2010, 85(5): 1321-1337.
[2]WAKTOLA G, TEMESGEN T. Pharmacological activities of oyster mushroom (Pleurotus ostreatus)[J]. Res Microbiol, 2020, 4(2): 688-695.
[3]ADAMS S, CHE D, HAILONG J, et al. Effects of pulverized oyster mushroom (Pleurotus ostreatus) on diarrhea incidence, growth performance, immunity, and microbial composition in piglets[J]. J Sci Food Agric, 2019, 99(7): 3616-3627.
[4]CHOURASIA A, TIWARI A, GANESHPURKAR A, et al. Evaluation of antiarthritic effect of culinary-medicinal oyster mushroom Pleurotus ostreatus cv. Florida (Agaricomycetes) on complete freund’s adjuvant induced arthritis in rats[J]. Int J Med Mushrooms, 2019, 21(11): 1123-1136.
[5]中国食用菌协会. 2020年度全国食用菌统计调查结果分析[J]. 中国食用菌, 2022, 41(1): 85-91.
[6]张艳璇,林坚贞,黄敬浩,等. 食用菌重要害螨——腐食酪螨的研究[J]. 福建省农科院学报, 1992, 7(2): 91-94.
[7]陆云华. 食用菌大害螨——腐食酪螨的生物学特性及防治对策[J]. 安徽农业科学, 2002, 30(1): 100-101.
[8]兰清秀,卢政辉,范青海. 食用菌螨种类研究进展[J]. 福建农业学报, 2012, 27(1): 104-108.
[9]JEONG E Y, KIM M G, LEE H S. Acaricidal activity of triketone analogues derived from Leptospermum scoparium oil against house-dust and stored-food mites[J]. Pest Manag Sci, 2009, 65(3): 327-331.
[10]赵红炎,刘俊杰,骆昕,等. 不同糙皮侧耳菌株对腐食酪螨生长发育的影响[J]. 食用菌学报, 2021, 28(1): 103-107.
[11]MICHELMORE R W, PARAN I, KESSELI R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations[J]. Proc Natl Acad Sci U S A, 1991, 88(21): 9828-9832.
[12]ZOU C, WANG P, XU Y. Bulked sample analysis in genetics, genomics and crop improvement[J]. Plant Biotechnol J, 2016, 14(10): 1941-1955.
[13]POOL J E. Genetic mapping by bulk segregant analysis in Drosophila: experimental design and simulation-based inference[J]. Genetics, 2016, 204(3): 1295-1306.
[14]桂颖,王成晨,边银丙,等. 群体分离分析法在食用菌遗传研究中的应用进展[J]. 食用菌学报, 2020, 27(4): 179-187.
[15]ABE A, KOSUGI S, YOSHIDA K, et al. Genome sequencing reveals agronomically important loci in rice using MutMap[J]. Nat Biotechnol, 2012, 30(2): 174-178.
[16]ZHANG H, WANG X, PAN Q, et al. QTG-seq accelerates QTL fine mapping through QTL partitioning and whole-genome sequencing of bulked segregant samples[J]. Mol Plant, 2019, 12(3): 426-437.
[17]RILEY R, SALAMOV A A, BROWN D W, et al. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi[J]. Proc Natl Acad Sci U S A, 2014, 111(27): 9923-9928.
[18]LI H, DURBIN R. Fast and accurate long-read alignment with Burrows-wheeler transform[J]. Bioinformatics, 2010, 26(5): 589-595.
[19]BROADINSTITUTI. Picard [CP]. http://broadinstitute.github.io/picard/.
[20]MCKENNA A, HANNA M, BANKS E, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data[J]. Genome Res, 2010, 20(9): 1297-1303.
[21]REUMERS J, DE RIJK P, ZHAO H, et al. Optimized filtering reduces the error rate in detecting genomic variants by short-read sequencing[J]. Nat Biotechnol, 2011, 30(1): 61-68.
[22]CINGOLANI P, PLATTS A, WANG LE L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3[J]. Fly (Austin), 2012, 6(2): 80-92.
[23]HILL J T, DEMAREST B L, BISGROVE B W, et al. MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq[J]. Genome Res, 2013, 23(4): 687-697.
[24]ALTSCHUL S F, MADDEN T L, SCHAFFER A A, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs[J]. Nucleic Acids Res, 1997, 25(17): 3389-3402.
[25]NGUYEN K L, GRONDIN A, COURTOIS B, et al. Next-generation sequencing accelerates crop gene discovery[J]. Trends Plant Sci, 2019, 24(3): 263-274.
[26]LI Z, XU Y. Bulk segregation analysis in the NGS era: a review of its teenage years[J]. Plant J, 2021, 109(6): 1355-1374.
[27]EHRENREICH I M, BLOOM J, TORABI N, et al. Genetic architecture of highly complex chemical resistance traits across four yeast strains[J]. PLoS Genet, 2012, 8(3): e1002570.
[28]MEIJNEN J P, RANDAZZO P, FOULQUIé-MORENO M R, et al. Polygenic analysis and targeted improvement of the complex trait of high acetic acid tolerance in the yeast Saccharomyces cerevisiae[J]. Biotechnol Biofuels, 2016, 9(1): 5.
[29]MU J, HUANG S, LIU S, et al. Genetic architecture of wheat stripe rust resistance revealed by combining QTL mapping using SNP-based genetic maps and bulked segregant analysis[J]. Theor Appl Genet, 2019, 132(2): 443-455.
[30]YANG Z, HUANG D, TANG W, et al. Mapping of quantitative trait loci underlying cold tolerance in rice seedlings via high-throughput sequencing of pooled extremes[J]. PLoS One, 2013, 8(7): e68433.
[31]PANDEY M K, KHAN A W, SINGH V K, et al. QTL-seq approach identified genomic regions and diagnostic markers for rust and late leaf spot resistance in groundnut (Arachis hypogaea L.)[J]. Plant Biotechnol J, 2017, 15(8): 927-941.
[32]SONG J, LI Z, LIU Z, et al. Next-generation sequencing from bulked-segregant analysis accelerates the simultaneous identification of two qualitative genes in soybean[J]. Front Plant Sci, 2017, 8: 919.
[33]LU H, LIN T, KLEIN J, et al. QTL-seq identifies an early flowering QTL located near Flowering Locus T in cucumber[J]. Theor Appl Genet, 2014, 127(7): 1491-1499.
[34]SHU J, LIU Y, ZHANG L, et al. QTL-seq for rapid identification of candidate genes for flowering time in broccoli × cabbage[J]. Theor Appl Genet, 2018, 131(4): 917-928.
[35]SHEN F, HUANG Z, ZHANG B, et al. Mapping gene markers for apple fruit ring rot disease resistance using a multi-omics approach[J]. G3 (Bethesda), 2019, 9(5): 1663-1678.
[36]DOUGHERTY L, SINGH R, BROWN S, et al. Exploring DNA variant segregation types in pooled genome sequencing enables effective mapping of weeping trait in Malus[J]. J Exp Bot, 2018, 69(7): 1499-1516.
[37]YU S, CHU W, ZHANG L, et al. Identification of laying-related SNP markers in geese using RAD sequencing[J]. PLoS One, 2015, 10(7): e0131572.
[38]ZHANG K, HAN M, LIU Y, et al. Whole-genome resequencing from bulked-segregant analysis reveals gene set based association analyses for the Vibrio anguillarum resistance of turbot (Scophthalmus maximus)[J]. Fish Shellfish Immunol, 2019, 88:76-83.
[39]GU X H, JIANG D L, HUANG Y, et al. Identifying a major QTL associated with salinity tolerance in nile tilapia using QTL-seq[J]. Mar Biotechnol (N Y), 2018, 20(1): 98-107.
[40]JAGADEESAN R, FOTHERINGHAM A, EBERT P R, et al. Rapid genome wide mapping of phosphine resistance loci by a simple regional averaging analysis in the red flour beetle, Tribolium castaneum[J]. BMC Genomics, 2013, 14: 650.
[41]BENOWITZ K M, COLEMAN J M, MATZKIN L M. Assessing the architecture of Drosophila mojavensis locomotor evolution with bulk segregant analysis[J]. G3 (Bethesda), 2019, 9(5): 1767-1775.
[42]ZHENG X, ZHU L, HE G. Genetic and molecular understanding of host rice resistance and Nilaparvata lugens adaptation[J]. Curr Opin Insect Sci, 2021, 45:14-20.
[43]SCHUMAN M C, BALDWIN I T. The layers of plant responses to insect herbivores[J]. Annu Rev Entomol, 2016, 61:373-394.
[44]LI H P, YANG W J, QU S X, et al. Variation of volatile terpenes in the edible fungi mycelia Flammulina velutipes and communications in fungus-mite interactions[J]. Food Res Int, 2018, 103:150-155.

备注/Memo

备注/Memo:
收稿日期:2022-04-01基金项目:国家自然科学青年基金项目(32001911); 财政部和农业农村部国家现代农业产业技术体系资助项目(CARS-20)作者简介:李辉平(1982-),男,江苏丹阳人,硕士,副研究员,主要从事食用菌遗传育种研究。(Tel)025-84392806;(E-mail)lhp211@163.com通讯作者:曲绍轩,(E-mail)ququzhibao@163.com,qusx@jaas.ac.cn
更新日期/Last Update: 2023-01-13