[1]李晓燕,李成双,金业程,等.茎瘤芥BjuGAPC基因序列特征及其参与茎发育的糖酸含量调控[J].江苏农业学报,2022,38(06):1474-1483.[doi:doi:10.3969/j.issn.1000-4440.2022.06.004]
 LI Xiao-yan,LI Cheng-shuang,JIN Ye-cheng,et al.Characteristics of BjuGAPC gene sequence in Brassica juncea var. tumida and its regulation of sugar and acid content in stem development[J].,2022,38(06):1474-1483.[doi:doi:10.3969/j.issn.1000-4440.2022.06.004]
点击复制

茎瘤芥BjuGAPC基因序列特征及其参与茎发育的糖酸含量调控()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年06期
页码:
1474-1483
栏目:
遗传育种·生理生化
出版日期:
2022-12-31

文章信息/Info

Title:
Characteristics of BjuGAPC gene sequence in Brassica juncea var. tumida and its regulation of sugar and acid content in stem development
作者:
李晓燕李成双金业程魏小涵李梦瑶
(四川农业大学园艺学院,四川成都611130)
Author(s):
LI Xiao-yanLI Cheng-shuangJIN Ye-chengWEI Xiao-hanLI Meng-yao
(College of Horticulture,Sichuan Agricultural University,Chengdu 611130,China)
关键词:
茎瘤芥茎膨大糖酸含量BjuGAPC基因理化性质表达分析
Keywords:
Brassica juncea var. tumidastem swellingsugar and acid contentBjuGAPC genephysical and chemical propertiesexpression analysis
分类号:
S637.3
DOI:
doi:10.3969/j.issn.1000-4440.2022.06.004
文献标志码:
A
摘要:
为明确茎瘤芥瘤状茎形成过程中的糖酸含量变化,揭示茎瘤芥甘油醛-3-磷酸脱氢酶(GAPDH)的主要生理功能,并进一步探究BjuGAPC基因的表达模式对糖酸含量的调控机制,首先对BjuGAPC基因进行克隆,同时,利用生物信息学方法对BjuGAPC的理化性质、系统进化发育等多方面进行系统分析,并使用qRT-PCR比较分析BjuGAPC基因在茎瘤芥茎不同发育阶段的表达规律。结果显示:(1)BjuGAPC基因开放阅读框全长1 038 bp,是一个稳定的亲水性蛋白质,同时具有多个蛋白质糖基化位点、磷酸化位点和特异性蛋白质激酶的结合位点;BjuGAPC与其他物种的GAPDH具有高度相似性,亲缘关系与同科的芜菁、油菜、萝卜较近。(2)qRT-PCR分析结果表明,BjuGAPC基因在茎瘤芥茎膨大不同时期的相对表达量差异显著且随着器官膨大相对表达量下调,与转录组的表达丰度一致。(3)相关性分析结果显示,基因表达量与可溶性糖和可滴定酸含量均呈正相关关系,并与糖酸比呈显著正相关关系。说明BjuGAPC基因参与甘油醛-3-磷酸脱氢酶中NAD+-GAPDH的合成,BjuGAPC基因对糖酸含量有正调控作用,可能参与了糖酸的合成过程。
Abstract:
The aim of the study was to clarify the changes of sugar and acid contents during the formation of tuberculate stem in Brassica juncea var. tumida and reveal the main physiological functions of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and to further explore the regulation mechanism of BjuGAPC gene expression mode on sugar and acid content. BjuGAPC gene was cloned first, and its physicochemical properties, system evolution development and other aspects were systematically analyzed by bioinformatics methods at the same time. qRT-PCR method was used to compare and analyze the expression pattern of BjuGAPC gene in different development stages of B. juncea var. tumida stem. The results showed that, firstly, the overall length of open reading frame of BjuGAPC gene was 1 038 bp, and it was a stable and hydrophilic protein with multiple glycosylation sites, phosphorylation sites and specific protein kinase binding sites. BjuGAPC had a high similarity with GAPDH of other species, and its genetic relationship was closely related to crops of the same family, such as Brassica rapa, Brassica napus and Raphanus sativus. Secondly, results of qRT-PCR analysis showed that, the relative expression level of BjuGAPC gene at different stages of B. juncea var. tumida stem swelling was significantly different and was down-regulated with the organ swelled, which was consistent with the expression abundance of transcriptome. Thirdly, correlation analysis revealed that, gene expression was positively correlated with soluble sugar content and titratable acid content, and was significantly positively correlated with sugar-acid ratio. The study revealed that, BjuGAPC gene participated in the synthesis of NAD+-GAPDH in GAPDH, and showed positive regulatory role in sugar and acid contents, which may be involved in the synthesis process of sugar and acid in Brassica juncea.

参考文献/References:

[1]QI X H, ZHANG M F, YANG J H. Molecular phylogeny of Chinese vegetable mustard (Brassica juncea) based on the internal transcribed spacers (ITS) of nuclear ribosomal DNA[J]. Genetic Resources and Crop Evolution, 2007, 54(8): 1709-1716.
[2]ZHANG L, LI Z, GARRAWAY J, et al. The casein kinase 2 β subunit CK2B1 is required for swollen stem formation via cell cycle control in vegetable Brassica juncea[J]. Plant, 2020, 104(3): 706-717.
[3]XU Z, WANG Q, GUO Y, et al. Stem-swelling and photosynthate partitioning in stem mustard are regulated by photoperiod and plant hormones[J]. Environmental and Experimental Botany, 2008, 62(2): 160-167.
[4]UMERM J, BIN S L, ZHAO S J, et al. Identification of key gene networks controlling organic acid and sugar metabolism during watermelon fruit development by integrating metabolic phenotypes and gene expression profiles[J]. Horticulture Research, 2020, 7(1): 3-7.
[5]DOIDY J, GRACE E, WIPF D, et al. Sugar transporters in plants and in their interactions with fungi[J]. Trends Plant Sci, 2012, 17(7): 13-22.
[6]SUZUKI Y J, ISHIYAMA K K, SUGAWARA M K, et al. Overproduction of chloroplast glyceraldehyde-3-phosphate dehydrogenase improves photosynthesis slightly under elevated [CO2] conditions in rice[J]. Plant & cell physiology, 2020, 62(1): 156-165.
[7]MARTIN W, BRINKMANN H, SAVONNA C, et al. Evidence for a chimeric nature of nuclear genomes: eubacterial origin of eukaryotic glyceraldehyde-3-phosphate dehydrogenase genes[J]. Proc Natl Acad Sci USA, 1993, 90(18): 8692-8696.
[8]WU Y H, WU M, HE G W, et al. Glyceraldehyde-3-phosphate dehydrogenase: a universal internal control for western blots in prokaryotic and eukaryotic cells[J]. Anal Biochem, 2012, 423(1): 15-22.
[9]PENALOZA E, GUTIERREZ A, MARTINE J, et al. Differential gene expression in proteoid root clusters of white lupin (Lupinus albus)[J]. Plant Physiology, 2002, 116(1): 28-36.
[10]JEONG M J, PARK S C, BYUN M O. Improvement of salt tolerance in transgenic potato plants by glyceraldehydes-3-phosphate dehydrogenase gene transfer[J]. Molecules and Cells, 2001, 12(2): 185-189.
[11]DAVOUDI M, MORAD-SARDAREH H, PAKNEJAD M, et al. The possible effect of silver nanoparticles on glyceraldehyde-3-phosphate dehydrogenase activity and formation of amyloid-like aggregates in MCF-7 cell line[J]. IUBMB Life, 2020, 72(10): 2214-2224.
[12]MUNOZ B J, CASCALES M B, IRLES S A, et al. The plastidial glyceraldehyde-3-phosphate dehydrogenase is critical for viable pollen development in Arabidopsis[J]. Plant Physiol, 2010, 152(5): 1830-1841.
[13]KOPECKOVA M, PAVKOVA I, STULIK J. Diverse localization and protein binding abilities of glyceraldehyde-3-phosphate dehydrogenase in pathogenic bacteria: the key to its multifunctionality[J]. Front Cell Infect Microbiol,2020, 10: 19.
[14]PIATTONI C V, FERRERO D M L, VEGETTI A, et al. Cytosolic glyceraldehyde-3-phosphate dehydrogenase is phosphorylated during seed development[J]. Front Plant Sci, 2017, 8: 518-522.
[15]SEBASTIAN P R, PAULA C, ALBERTO A I, et al. Characterization of Arabidopsis lines deficient in GAPC-1, a cytosolic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase[J]. Plant Physiol, 2008, 148(3): 1655-1667.
[16]NAKASHIMA K, SHINWARI Z K, SAKUMA Y, et al. Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration and high-salinity-responsive gene expression[J]. Plant Mol Biol, 2000, 42(4): 657-665.
[17]LI C W, SU R C, CHENG C P, et al. Tomato RAV transcription factor is a pivotal modulator involved in the AP2/EREBP mediated defense pathway[J]. Plant Physiol, 2011, 156(1): 213-227.
[18]KITOMI Y, ITO H, HOBO T, et al. The auxin responsive AP2/ERF transcription factor CROWN ROOTLESS5 is involved in crown root initiation in rice through the induction of OsRR1, a type-A response regulator of cytokinin signaling[J]. Plant, 2011, 67(3): 472-484.
[19]李彤,邵慧慧,韩嘉宁,等. 金鱼草AmPIF4基因克隆及调控花香物质合成释放功能分析[J]. 西北植物学报, 2021, 41(12): 1994-2001.
[20]LI M Y, XIE F J, HE Q, et al. Expression analysis of XTH in stem swelling of stem mustard and selection of reference genes[J]. Genes (Basel), 2020, 11(1):113-116.
[21]KUMAR S, STECHER G, KNYAZ C, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 2018, 35(6): 1547-1549.
[22]TAKEDA T, FUKUI Y. Possible role of NAD-dependent glyceraldehyde-3-phosphate dehydrogenase in growth promotion of Arabidopsis seedlings by low levels of selenium[J]. Biosci Biotechnol Biochem,2015,79(10): 1579-1586.
[23]YOON J, CHO L H, TUN W, et al. Sucrose signaling in higher plants[J]. Plant Sci, 2021, 302: 110703.
[24]严志祥,杨海燕,樊苏帆,等. 黑莓果实发育过程中蔗糖磷酸合成酶基因的表达分析[J].南京林业大学学报(自然科学版),2022,46(1):179-186.
[25]李东霞,徐中亮,符海泉,等. 糖对椰枣组织培养物的影响[J].南方农业学报,2021,52(11):3059-3066.
[26]田双燕,张应龙,何天久,等. 马铃薯间作玉米对马铃薯生长、产量及糖类物质的影响[J].南方农业学报,2021,52(5):1198-1205.
[27]姜楠南,张启翔,王媛,等. 赤霉素对大富贵芍药休眠解除及内源激素和糖类代谢的影响[J].南京林业大学学报(自然科学版),2020,44(3):26-32.
[28]BACKHAUSEN J E, VETTER S, BAALMANN E, et al. NAD-dependent malate dehydrogenase and glyceraldehyde-3-phosph-ate dehydrogenase isoenzymes play an important role in dark metabolism of various plastid types[J]. Planta, 1998, 205: 359-366.
[29]AVILAN L, MABERLY C S, MEKHALF M, et al. Regulation of glyceraldehyde-3-phosphate dehydrogenase in the eustigmatophyte Pseudocharaciopsis ovalis is intermediate between a chlorophyte and a diatom[J]. Eur J Phycol, 2012, 47(3): 207-215.
[30]SEBASTIAN P R, PAULA C, ALBERTO A I, et al. Characterization of Arabidopsis lines deficient in GAPC-1, a cytosolic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase[J]. Plant Physiol, 2008, 148(3): 1655-1667.
[31]HART G W, HOUSLEY M P, SLAWSON C. Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins[J]. Nature, 2007, 446(7139): 1017-1022.
[32]Woodward A W, Bartel B. Auxin: regulation, action, and interaction[J]. Ann Bot, 2005, 95(5): 707-735.

相似文献/References:

[1]武强,韩旭,唐余学,等.2种基于历史丰歉气象影响指数的茎瘤芥产量动态预报方法比较[J].江苏农业学报,2021,(06):1443.[doi:doi:10.3969/j.issn.1000-4440.2021.05.011]
 WU Qiang,HAN Xu,TANG Yu-xue,et al.Comparison of two methods for yield prediction of Brassica juncea var. tumida Tsen & Lee based on meteorological influence index of historical yield[J].,2021,(06):1443.[doi:doi:10.3969/j.issn.1000-4440.2021.05.011]
[2]武强,唐余学,闫梦玲,等.2种茎瘤芥产量丰歉动态预报方法的对比[J].江苏农业学报,2022,38(02):486.[doi:doi:10.3969/j.issn.1000-4440.2022.02.024]
 WU Qiang,TANG Yu-xue,YAN Meng-ling,et al.Accuracy comparison of two methods for dynamic yield prediction of Brassica juncea var. tumida[J].,2022,38(06):486.[doi:doi:10.3969/j.issn.1000-4440.2022.02.024]

备注/Memo

备注/Memo:
收稿日期:2022-04-07基金项目:国家自然科学基金项目(32002027)作者简介:李晓燕(1999-),女,山西长治人,硕士研究生,主要从事蔬菜栽培生理与遗传育种研究。(E-mail)Lxy2324804342@163.com通讯作者:李梦瑶,(E-mail)limy@sicau.edu.cn
更新日期/Last Update: 2023-01-13