[1]李风顺,乔俊卿,张荣胜,等.防治水稻恶苗病拮抗细菌的筛选、鉴定和评价[J].江苏农业学报,2022,38(04):907-914.[doi:doi:10.3969/j.issn.1000-4440.2022.04.006]
 LI Feng-shun,QIAO Jun-qing,ZHANG Rong-sheng,et al.Screening, identification and evaluation of antagonistic bacteria for the control of Rice Bakanae Disease[J].,2022,38(04):907-914.[doi:doi:10.3969/j.issn.1000-4440.2022.04.006]
点击复制

防治水稻恶苗病拮抗细菌的筛选、鉴定和评价()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年04期
页码:
907-914
栏目:
植物保护
出版日期:
2022-08-31

文章信息/Info

Title:
Screening, identification and evaluation of antagonistic bacteria for the control of Rice Bakanae Disease
作者:
李风顺12乔俊卿2张荣胜2刘邮洲2刘永锋12
(1.南京农业大学植物保护学院,江苏南京210095;2.江苏省农业科学院植物保护研究所,江苏南京210014)
Author(s):
LI Feng-shun12QIAO Jun-qing2ZHANG Rong-sheng2LIU You-zhou2LIU Yong-feng12
(1.College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;2.Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China)
关键词:
水稻恶苗病拮抗细菌促生作用生防效果
Keywords:
rice bakanae diseaseantagonistic bacteriagrowth-promoting effectbiocontrol efficiency
分类号:
S476
DOI:
doi:10.3969/j.issn.1000-4440.2022.04.006
文献标志码:
A
摘要:
本研究从植物根际土壤中分离获得菌落形态各异的细菌分离株432株,以引起水稻恶苗病的藤仓镰刀菌菌群为指示菌,通过孢子萌发和平板对峙试验筛选获得对孢子和菌丝都具有显著抑制作用的细菌6株。生防相关特征分析结果显示,菌株LSRS26、JTGSL12和JTGSM1对水稻恶苗病病菌的抑菌效果、生物膜形成能力、群集游动能力和产抑菌物质方面的作用较为优秀。分子鉴定结果表明,菌株LSRS26、JTRSM1、JTGSL12和AHGHL2是Bacillus amyloliquefaciens(解淀粉芽孢杆菌),菌株JTGSM22和JTLM2是Paenibacillus jamilae(杰米拉类芽孢杆菌)。水稻促生试验结果显示,当浸种菌液浓度(OD600)=0.1时,菌株LSRS26和JTRSM1对水稻出芽具有促进作用;当浸种菌液浓度(OD600)=0.1时,菌株JTGSL12对水稻植株鲜质量和株高的促进效果最为显著。盆栽防效试验结果显示,当浸种菌液浓度(OD600)=1.0时,3株芽孢杆菌对水稻恶苗病都表现出不同程度的防治作用,防效为58.00%~72.00%,其中JTGSL12的防效最高,为71.62%。本研究通过筛选获得3株优秀的生防菌,为防治水稻恶苗病的生物农药种子处理剂的创制积累了菌株资源。
Abstract:
In this study, 432 bacterial strains with different colony morphologies were isolated from rhizosphere soil, and six isolates with significant inhibition activity on both spores and mycelium were screened and obtained by spore germination and dural culture method using Fusarium fujikuroi strain complex group which could cause bakanae of rice as the indicator fungus. Analysis study of the biocontrol characteristics showed that strain LSRS26, JTGSL12 and JTGSM1 performed well in inhibition activity, biofilm formation, swarming ability and producing antagonistic substances against Fusarium. Results of molecular identification indicated that strains LSRS26, JTRSM1, JTGSL12 and AHGHL2 belonged to Bacillus amyloliquefaciens, strains JTGSM22 and JTLM2 belonged to Paenibacillus jamilae. The results of seed germination experiment showed that strains LSRS26 and JTRSM1 had a promotion effect on rice germination when the seed soaking concentration (OD600) was 0.1. When the seed soaking concentration (OD600) was 0.1, strain JTGSL12 showed the most significant effect on the fresh weight and height of rice plants. Pot experiment showed that strains LSRS26, JTGSL12 and JTGSM1 exhibited different degrees of control effect against rice bakanae disease when the seed soaking concentration (OD600) was 1.0, the biocontrol efficiency ranged from 58.00% to 72.00%. Strain JTGSL12 got the highest control efficiency at 71.62%. Three excellent Bacillus strains were screened and obtained, which provided strain resources for the creation of biopesticide seed treatment agent for the control of rice bakanae disease.

参考文献/References:

[1]SINGH R, SUNDER S. Foot rot and bakanae of rice: an overview[J]. Review of Plant Pathology, 2012, 5: 566-604.
[2]王晓莉,李哲,叶文武,等. 江苏省13个地区水稻种子携带 4 种不同恶苗病菌的 LAMP 检测[J]. 南京农业大学学报, 2020, 43(5): 846-852.
[3]BASHYAL B M. Etiology of an emerging disease: bakanae of rice[J]. Indian Phytopathology, 2018, 71: 485-494.
[4]NICOLLI C P, HAIDUKOWSKIC M, SUSCA A, et al. Fusarium fujikuroi species complex in Brazilian rice: unveiling increased phylogenetic diversity and toxigenic potential[J]. International Journal of Food Microbiology, 2020, 330: 108667.
[5]郑睿. 江苏省水稻恶苗病菌对咪鲜胺和氰烯菌酯的抗药性监测及其敏感性分析[D]. 南京:南京农业大学, 2014.
[6]陈利锋,徐敬友. 农业植物病理学[M]. 北京:中国农业出版社, 2011.
[7]潘以楼,汪智渊. 水稻恶苗病菌(Fusarium moniliforme)对多菌灵不同抗性菌株的菌丝生长、产孢和致病力差异[J]. 江苏农业学报, 1997, 13(2): 90-93.
[8]刘永锋,陈志谊,周保华,等. 江苏省部分稻区恶苗病菌对水稻浸种剂的抗药性检测[J]. 江苏农业学报, 2002, 18(3): 190-192.
[9]郑睿,聂亚锋,于俊杰,等. 江苏省水稻恶苗病菌对咪鲜胺和氰烯菌酯的敏感性[J]. 农药学学报, 2014, 16(6): 693-698.
[10]潘登,马甜甜,许江岩,等. 水稻恶苗病菌对氟啶胺的敏感性及与其他杀菌剂的比较[J]. 上海农业学报,2020,36(4): 77-82.
[11]周扬,刘元明,孙光忠,等. 湖北省生物农药的研发与应用[J]. 湖北植保, 2017(5): 52-54.
[12]陈志谊,殷尚智. 筛选和利用拮抗细菌防治水稻纹枯病和恶苗病的研究[J]. 生物防治通报, 1992, 8(2): 79-82.
[13]李斌,谢关林,吕意琳,等. 水稻革兰氏阳性细菌的主要种群结构及对纹枯病和恶苗病菌的拮抗性[J]. 中国水稻科学, 2006,20(1): 84-88.
[14]LIU J, XIN M, YU W, et al. Depressed biofilm production in Bacillus amyloliquefaciens C06 causes γ-polyglutamic acid (γ-PGA) overproduction[J]. Current Microbiology, 2011, 62(1): 235-241.
[15]LIANG Z, QIAO J Q, LI P P, et al. A novel Rap-Phr system in Bacillus velezensis NAU-B3 regulates surfactin production and sporulation via interaction with ComA[J]. Applied Microbiology and Biotechnology, 2020, 104(23): 1-16.
[16]陈宏州,杨红福,姚克兵,等. 水稻恶苗病病原菌鉴定及室内药剂毒力测定[J]. 植物保护学报, 2018, 45(6): 1356-1366.
[17]陆凡,陈志谊,陈毓苓,等. 水稻恶苗病拮抗细菌的筛选及其生物活性测定[J]. 江苏农业学报, 1998,19(3): 22-26.
[18]朱凤,陈夕军,童蕴慧,等. 水稻内生细菌的分离及其拮抗性与潜在致病性测定[J]. 中国生物防治学报, 2007, 23(1): 68-72.
[19]田洁萍,王玉霞,张淑梅. 解淀粉芽孢杆菌防治水稻恶苗病效果初报[J]. 黑龙江科学, 2010(4): 10-11.
[20]李玉洋,辛寒晓,范学明,等. 水稻恶苗病拮抗菌的筛选、鉴定及其抑菌活性[J]. 生物技术通报, 2017, 33(5): 190-196.
[21]孙天宇. 抗水稻恶苗病放线菌的分离鉴定及功能研究[D]. 哈尔滨:东北农业大学,2020.
[22]FAN B, BORRISS R, BLEISS W,et al. Gram-positive rhizobacterium Bacillus amyloliquefaciens FZB42 colonizes three types of plants in different patterns[J]. Journal of Microbiology, 2012, 50(1): 38-44.
[23]QIAO J, XIANG Y, LIANG X, et al. Addition of plant-growth-promoting Bacillus subtilis PTS-394 on tomato rhizosphere has no durable impact on composition of root microbiome[J]. BMC Microbiology, 2017, 17(1): 131-142.
[24]ONGENA M, JACQUES P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol[J]. Trends in Microbiology, 2008, 16(3): 115-125.
[25]BENEDUZI A, AMBROSINI A, PASSAGLIA L M. Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents[J]. Genetics and Molecular Biology 2012, 35(4): 1044-1051.
[26]RABBEE M, ALI M, CHOI J, et al. Bacillus velezensis: a valuable member of bioactive molecules within plant microbiomes[J]. Molecules, 2019, 24(6): 1046.
[27]FAN B, WANG C, SONG X F, et al. Bacillus velezensis FZB42 in 2018: the gram-positive model strain for plant growth promotion and biocontrol[J]. Frontiers in Microbiology, 2018, 9. DOI:10.3389/fmicb.2018.02491.
[28]郭坚华,王玉菊,李瑾,等. 抑菌圈-定殖力双重测定法筛选青枯病生防细菌[J]. 植物病理学报, 1996, 26(1): 49-54.
[29]陈秀琴,刘其全,何玉仙,等. 草地贪夜蛾性诱剂纳米诱芯的制备及其应用[J].南方农业学报,2021,52(3):626-631.
[30]沈硕. 中度嗜盐菌S61生防因子分析及其对马铃薯干腐病的防效[J].南方农业学报,2021,52(10):2619-2631.

备注/Memo

备注/Memo:
收稿日期:2022-01-10基金项目:江苏省农业科技自主创新基金项目[CX(20)3126];江苏省自然科学基金项目(BK20201239)作者简介:李风顺(1996-),女,山东济宁人,硕士研究生,主要从事水稻病害及生物防治研究。(E-mail)2354499463@qq.com;乔俊卿为共同第一作者。通讯作者:刘永锋, (E-mail)liuyf@jaas.ac.cn
更新日期/Last Update: 2022-09-06