[1]吴文丽,谢英添,董晓鸣,等.塑料中棚番茄有机肥与化肥配施能耗与温室气体排放评估[J].江苏农业学报,2021,(06):1516-1525.[doi:doi:10.3969/j.issn.1000-4440.2021.05.021]
 WU Wen-li,XIE Ying-tian,DONG Xiao-ming,et al.Evaluation of energy consumption and greenhouse gas emissions under combined application of organic fertilizer and chemical fertilizer in plastic greenhouse tomato production[J].,2021,(06):1516-1525.[doi:doi:10.3969/j.issn.1000-4440.2021.05.021]
点击复制

塑料中棚番茄有机肥与化肥配施能耗与温室气体排放评估()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年06期
页码:
1516-1525
栏目:
园艺
出版日期:
2021-12-30

文章信息/Info

Title:
Evaluation of energy consumption and greenhouse gas emissions under combined application of organic fertilizer and chemical fertilizer in plastic greenhouse tomato production
作者:
吴文丽1谢英添1董晓鸣1尤春2
(1.江苏联合职业技术学院盐城生物工程分院,江苏盐城224051;2.盐城市蔬菜研究所,江苏盐城224002;)
Author(s):
WU Wen-li1XIE Ying-tian1DONG Xiao-ming1YOU Chun2
(1.Yancheng Bioengineering Branch of Jiangsu Union Technical Institute, Yancheng 224051, China;2.Yancheng institute of vegetables, Yancheng 224002, China)
关键词:
能耗温室气体排放番茄中棚
Keywords:
energy consumptiongreenhouse gas emissionstomatogreenhouse
分类号:
S641.2
DOI:
doi:10.3969/j.issn.1000-4440.2021.05.021
文献标志码:
A
摘要:
以江苏省盐城市塑料中棚番茄生产系统为研究对象,使用生命周期评价法分析比较常规施肥和5种使用生物有机肥或菌菇渣部分、全部替代尿素有机肥与化肥配施条件下番茄单位产量能耗和温室气体排放值。结果表明,6种施肥方案下,每生产1 000 kg番茄的能耗为2 264~3 094 MJ,温室气体排放值为150~204 kg,CO2-eq。设施建设对整个系统的环境影响要高于栽培管理。通过提高建材的使用寿命,合理减少建材使用量或提高番茄产量可达到节能减排的目标。常规施肥条件下,尿素的生产与施用所造成的能源消耗和温室气体排放值均占栽培管理的40%以上,本研究中利用有机肥替代尿素的5种有机肥与化肥配施方案,与常规施肥相比,节能减排效果最佳的是生物有机肥氮全部替代尿素氮的施肥方案,其次是菌菇渣与生物有机肥氮分别替代25%尿素氮的施肥方案。
Abstract:
Taking the plastic shed tomato production system as the research object in Yancheng, Jiangsu province, the bio-organic fertilizer or mushroom residue was used to partially or completely replace urea for formula fertilization. Energy consumption and greenhouse gas emissions of the tomato production system in greenhouse under six kinds of fertilization schemes were assessed by using life cycle assessment (LCA). The results showed that environmental impacts of producting 1 000 kg tomatoes were 2 264-3 094 MJ for energy consumption, 150-204 kg,CO2-eq for greenhouse gas emissions. The environmental impact of horticultural facilities construction on tomato production system was higher than that of tomato cultivation and management. By increasing the service life of various building materials, reducing building materials consumption or increasing the yield of tomato per unit area, the goal of energy saving and emission reduction could be achieved. The value of energy consumption and greenhouse gas emissions caused by urea production and application accounted for more than 40% of tomato cultivation and management under conventional fertilization. In this study, the best energy-saving and emission-reduction effect was the formula fertilization for completely replacing urea with bio-organic fertilizer of five formula fertilization schemes, followed by the formula fertilization for respectively replacing 25% urea with mushroom residue and bio-organic fertilizer.

参考文献/References:

[1]中国共产党中央委员会. 中共中央关于制定国民经济和社会发展第十四个五年规划和二O三五年远景目标的建议[R].北京:中国共产党中央委员会,2020.
[2]中华人民共和国农业部.高标准农田建设标准:NY/T 2148-2012 [S].北京:中国标准出版社,2012.
[3]LI G D, LI X Y, JIANG C H, et al. Analysis on impact of facility agriculture on ecological function of modern agriculture[J]. Procedia Environmental Sciences,2011,10:300-306.
[4]徐彬,徐健,祁建杭,等. 江苏省设施蔬菜连作障碍土壤理化及生物特征[J].江苏农业学报,2019,35(5):1124-1129.
[5]沈启扬,於锋,周学剑. 江苏省设施蔬菜关键生产环节机具的选型与配备研究[J].江苏农业科学,2018,46(2):157-161.
[6]夏礼如,李岩,孟力力. 江苏设施蔬菜产业发展主要风险因子分析及应对措施[J].江苏农业科学,2017,45(18):332-333.
[7]陈罡,管安琴,卢昱宇,等. 江苏省设施蔬菜病虫害绿色防控技术应用现状及对策[J].江苏农业科学,2019,47(22):121-124.
[8]Food and agriculture organization of the United Nations. FAO statistical databases[DB/OL].(2020-6-18)
[2021-8-30]. http://www.fao.org/faostat/en/#data/QCL.
[9]贾晓玥. 番茄连作设施土壤中微量元素的变化及其对番茄产量和品质的影响[D].沈阳:沈阳农业大学,2020.
[10]CHAI R, YE X, MA C, et al. Greenhouse gas emissions from synthetic nitrogen manufacture and fertilization for main upland crops in China[J]. Carbon Balance and Management,2019,14: 20.
[11]ZHANG W F, DOU Z X, HE P, et al. New technologiesreduce greenhouse gas emissions from nitrogenous fertilizer in China[J]. Proc Natl Acad Sci USA,2013,110:8375-8380.
[12]孙锦,高洪波,杜长霞,等. 我国设施园艺发展现状与趋势[J].南京农业大学学报,2019,42(4):594-604.
[13]蒋卫杰,邓杰,余宏军. 设施园艺发展概况、存在问题与产业发展建议[J].中国农业科学,2015,48(17):3515-3523.
[14]FAN Y, ZHANG Y, HESS F, et al. Nutrient balance and soil changes in plastic greenhouse vegetable production[J]. Nutrient Cycling in Agroecosystems,2020,117:77-92.
[15]黄绍文,唐继伟,李春花,等. 我国蔬菜化肥减施潜力与科学施用对策[J].植物营养与肥料学报,2017,23(6):1480-1493.
[16]李天来,杨丽娟. 作物连作障碍的克服——难解的问题[J].中国农业科学,2016,49(5):916-918.
[17]FAN J, DING W, XIANG J, et al. Carbon sequestration in an intensively cultivated sandy loam soil in the North China Plain as affected by compost and inorganic fertilizer application[J]. Geoderma,2014(230/231):22-28.
[18]HAO X H, LIU S L, WU J S, et al. Effect of long-term application of inorganic fertilizer and organic amendments on soil organic matter and microbial biomass in three subtropical paddy soils[J]. Nutrient Cycling in Agroecosystems,2008,81(1):17-24.
[19]宋震震,李絮花,李娟,等. 有机肥和化肥长期施用对土壤活性有机氮组分及酶活性的影响[J].植物营养与肥料学报,2014,20(3):525-533.
[20]龚雪蛟,秦琳,刘飞,等. 有机类肥料对土壤养分含量的影响[J].应用生态学报,2020,31(4):1403-1416.
[21]慕君,马旭东,张丹丹,等. 有机肥与化肥配施下土壤氮组分变化与氮素利用率研究[J].干旱地区农业研究,2021,39(5):107-113.
[22]ZHAO S, LIU D Y, CHEN L L, et al. Bio-organic fertilizer application significantly reduces the Fusarium oxysporum population and alters the composition of fungi communities of watermelon Fusarium wilt rhizosphere soil[J]. Biology & Fertility of Soils,2014,50(5):765-774.
[23]ARGAW, ANTENEN. Organic and inorganic fertilizer application enhances the effect of Bradyrhizobium on nodulation and yield of peanut (Arachis hypogea L.) in nutrient depleted and sandy soils of Ethiopia[J]. International Journal of Recycling of Organic Waste in Agriculture,2017,6(3):219-231.
[24]李艳梅,孙焱鑫,邹国元,等. 设施蔬菜经营主体施肥现状及有机肥替代化肥情况调研——基于北京市顺义区的实证分析[J].中国蔬菜,2021(9):84-90.
[25]曹健. 有机资源与化肥配施农业模式的农学和环境效应评价[D].北京:中国农业大学,2015.
[26]鲁伟丹,李俊华,罗彤,等. 连续三年不同有机肥替代率对小麦产量及土壤养分的影响[J].植物营养与肥料学报,2021,27(8):1330-1338.
[27]魏文良,刘路,仇恒浩. 有机无机肥配施对我国主要粮食作物产量和氮肥利用效率的影响[J].植物营养与肥料学报,2020,26(8):1384-1394.
[28]任科宇,陆东明,邹洪琴,等. 有机替代对长江流域水稻产量和籽粒含氮量的影响[J/OL].农业资源与环境学报,2021.
[2021-09-16].https://doi.org/10.13254/j.jare.2021.0380.
[29]SERME I, OUATTARA K, OUATTARA D, et al. Sorghum grain yield under different rates of mineral and organic fertilizer application in the South-Sudan Zone of Burkina Faso[M]. Berlin:Springer Press,2018.
[30]中华人民共和国农业部.生物有机肥:NY 884-2012 [S].北京:中国标准出版社,2012.
[31]TAO R, LIANG Y C, STEVEN A, et al. Supplementing chemical fertilizer with an organic component increases soil biological function and quality[J].Applied Soil Ecology,2013,24(6):1627-1632.
[32]SUN J U, FU Q X, GU J, et al. Effects of bio-organic fertilizer on soil enzyme activities and microbial community in kiwifruit orchard[J]. The Journal of Applied Ecology,2016,27(3):829-837.
[33]QU C C, CHEN X M, ZHANG Z L, et al. Long-term effects of bio-organic fertilizer application on soil organic carbon pool and enzyme activity of cucumber continuous cropping[J]. The Journal of Applied Ecology,2019,30(9): 3145-3154,
[34]宋以玲,于建,陈士更,等. 化肥减量配施生物有机肥对油菜生长及土壤微生物和酶活性影响[J].水土保持学报,2018,32(1):352-360.
[35]王明友,宋卫东,王教领,等. 基于食用菌生产的农业废弃物基质化利用研究进展[J].山东农业科学,2017,49(1):155-159.
[36]宋卫东,薛艳凤,王教领,等. 我国食用菌产业动态浅析[J].食用菌,2016,38(2):11-13.
[37]董雪梅,王延锋,孙靖轩,等. 食用菌菌渣综合利用研究进展[J].中国食用菌,2013,32(6):4-6.
[38]PHAN C W, SABATATNAM V. Potential uses of spent mushroom substrate and its associated lignocellulosic enzymes[J].Applied Microbiogy and Biotechnology,2012,96(4):863-873.
[39]石思博,王旭东,叶正钱,等. 菌渣化肥配施对稻田土壤微生物量碳氮和可溶性碳氮的影响[J].生态学报,2018,38(23):8612-8620.
[40]胡杨勇,马嘉伟,叶正钱,等. 稻耳轮作制度下连续菌渣还田对土壤肥力性状的影响[J].水土保持学报,2013,27(6):172-176.
[41]栗方亮,王煌平,张 青,等. 稻田施用菌渣土壤团聚体的组成及评价[J].生态与农村环境学报,2015, 31(3):340-345.
[42]张黎杰,周玲玲,田福发,等. 日光温室西葫芦菌渣复合基质栽培技术[J].中国瓜菜,2018,31(3):56-57.
[43]宫志远,韩建东,魏建林,等.金针菇菌渣有机肥在油菜上施用技术研究[J].中国食用菌,2012,31(5):42-44.
[44]陆思文,罗凡,兰国俊,等. 施用菇渣与有机肥对生菜生长和重金属累积的影响[J].土壤通报,2020,51(4):969-978.
[45]梁龙,陈源泉,高旺盛. 基于生命周期的循环农业系统评价[J].环境科学,2010,11(31):2795-2803.
[46]MAURIZIO C, SONIA L, MARINA M. Life cycle assessment (LCA) of protected crops: an Italian case study[J]. Journal of Cleaner Production,2012,28:56-62.
[47]BENYAMIN K, SHAHIN R, MAHMOUND O, et al. Environmental impact assessment of tomato and cucumber cultivation in greenhouses using life cycle assessment and adaptive neuro-fuzzy inference system[J]. Journal of Cleaner Production,2014,73:183-192.
[48]MAURIZIO C, FULVIO A, SONIA L. From the LCA of food products to the environmental assessment of protected crops districts: a case-study in the south of Italy[J]. Journal of Environmental Management,2012,93(1): 194-208.
[49]王效琴,吴庆强,周建斌,等. 设施番茄生产系统的环境影响生命周期评价[J].环境科学学报,2014,34(11):2940-2947.
[50]郭金花. 典型设施蔬菜生产系统水肥、农药投入及环境影响的生命周期评价[D].北京:中国农业大学,2016.
[51]徐强,胡克林,李季,等. 华北平原不同生产模式设施蔬菜生命周期环境影响评价[J].环境科学,2018,39(5):2480-2488.
[52]杨建新. 产品生命周期评价方法及应用[M].北京:气象出版社,2002.
[53]HEIDARI M, OMIND M. Energy use patterns and econometric models of major greenhouse vegetable productions in Iran[J]. Energy,2011,36(1):220-225.
[54]CANAKCI M, AKINCI I. Energy use pattern analyses of greenhouse vegetable production[J]. Energy,2006, 31(8):1243-1256.
[55]IPCC. Cliamte change2014:synthesis report[R]. Geneva, Switzerland: IPCC Press, 2014.
[56]HAUSCHILD M, WENZEL H. Environmental assessment of products, sci-entific background[M]. London:Chapman and Hall,1998.
[57]赵明炯,王孝忠,刘彬,等. 长三角地区蔬菜生产的活性氮损失和温室气体排放估算[J].农业环境科学学报,2020,39(6):1409-1419.
[58]王义祥,高凌飞,叶菁,等. 菌渣垫料堆肥过程碳素物质转化规律[J].农业工程学报,2016,32(S2):292-296.
[59]HAMMOND G, JONES C. A BSRIA guide embodied carbon: the inventory of carbon and energy (ICE)[M]. University of Bath, Bracknell,UK:BSRIA Limited,2008.
[60]吴猛. 基于生命周期的纺织服装产品碳足迹评价[J].纺织导报,2018,895(6):30-32.
[61]CETIN B, VARDAR A. An economic analysis of energy requirements and input costs for tomato production in Turkey[J]. Renewable Energy,2008,33(3):428-433.
[62]李柘锦,隋鹏,龙攀,等. 不同有机物料还田对农田系统净温室气体排放的影响[J].农业工程学报,2016,32(2):111-117.
[63]BHAT M G, ENGLISH B C, TURHOLLO A F, et al. Energy in synthetic fertilizers and pesticides: revisited. Final project report[R]. Energy Conservation Consumption & Utilization,USA: Oak Ridge National Laboratory,1994.
[64]籍春蕾,丁美,王彬鑫,等. 基于生命周期分析方法的化肥与有机肥对比评价[J].土壤通报,2012,43(2):412-417.
[65]柳杨,程志,王廷宁,等. 基于生命周期评价的氮肥温室气体排放研究[J]. 环境与可持续发展,2015,40(3):66-68.
[66]陈舜,逯非,王效科. 中国氮磷钾肥制造温室气体排放系数的估算[J].生态学报,2015,35(19):6371-6383.
[67]JIANG M M, CHEN B, ZHOU J B, et al. Emergy account for biomass resource exploitation by agriculture in China[J]. Energy Policy,2007, 35(9):4704-4719.
[68]TORRELLAS M, ANTON A, LOPEZ J C, et al. LCA of a tomato crop in a multi-tunnel greenhouse in Almeria[J]. International Journal of Life Cycle Assessment,2012,17(7):863-875.
[69]BOULARD T, RAEPPEL C, BRUN R, et al. Environmental impact of greenhouse tomato production in France[J]. Agronomy for Sustainable Development,2011,31(4):757-777.
[70]PLATIS D P, MAMOLOS A P, KALBURTJI K L, et al. Analysis of energy and carbon and blue water footprints in agriculture: a case study of tomato cultivation systems[J]. Euro-Mediterranean Journal for Environmental Integration,2021,6(12):1-10.
[71]中国共产党中央委员会. 国务院关于坚持农业农村优先发展做好“三农”工作的若干意见[M].北京:人民出版社,2019.

备注/Memo

备注/Memo:
收稿日期:2021-08-30基金项目:江苏现代农业(蔬菜)产业技术体系项目[JATS(2020)204]作者简介:吴文丽(1989-),女,江苏扬州人,硕士,讲师,主要研究方向为园艺作物栽培技术研究与推广。(E-mail)874107050@qq.com通讯作者:尤春,(E-mail)38724322@qq.com
更新日期/Last Update: 2022-01-07