[1]彭凌,林锦铨,李玲慧,等.一株猪丹毒丝菌的全基因组测序及SpaA基因分析[J].江苏农业学报,2021,(03):694-698.[doi:doi:10.3969/j.issn.1000-4440.2021.03.018]
 PENG Ling,LIN Jin-quan,LI Ling-hui,et al.Whole-genome sequencing and SpaA gene analysis of a Erysipelothrix rhusiopahiae strain[J].,2021,(03):694-698.[doi:doi:10.3969/j.issn.1000-4440.2021.03.018]
点击复制

一株猪丹毒丝菌的全基因组测序及SpaA基因分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年03期
页码:
694-698
栏目:
畜牧兽医·水产养殖
出版日期:
2021-06-30

文章信息/Info

Title:
Whole-genome sequencing and SpaA gene analysis of a Erysipelothrix rhusiopahiae strain
作者:
彭凌林锦铨李玲慧刘博婷蔡巩林
(韶关学院英东生物与农业学院,广东韶关512005)
Author(s):
PENG LingLIN Jin-quanLI Ling-huiLIU Bo-tingCAI Gong-lin
(Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China)
关键词:
猪丹毒丝菌全基因组测序表面保护性抗原A(SpaA)
Keywords:
Erysipelothrix rhusiopahiaewhole-genome sequencingsurface protective antigen A (SpaA)
分类号:
S852.61
DOI:
doi:10.3969/j.issn.1000-4440.2021.03.018
文献标志码:
A
摘要:
本研究测定猪丹毒丝菌临床毒株SG7的全基因组序列,并运用生物信息学方法对测定的全基因组序列及猪丹毒丝菌表面保护性抗原A基因(SpaA)进行分析。SG7菌株的基因组全长为1 834 291.00 bp,G+C含量为36.3%,基因总数1 846个。将SG7菌株与GenBank中8条完整的猪丹毒丝菌全基因组序列进行比较,发现国内外不同菌株间基因组的基本信息存在不同程度差异。基于全基因组单核苷酸多态性(SNPs)的系统发育分析结果表明,9株菌株聚为3个分支,国内菌株并不完全处于同一分支,SG7菌株与国内常见菌株不属于同一进化分支。SpaA基因高变区的分析结果显示,9株菌株亦可分为3个SpaA型,SG7菌株为携带Met203的高致病性菌株。除SG7菌株外,其他8株菌株的SpaA基因分型结果与基于全基因组SNPs分析的结果一致,说明SG7菌株的遗传背景复杂。本研究结果可为猪丹毒丝菌基因组整体水平研究和疫苗的研发奠定基础。
Abstract:
In this study, the whole genome sequence of Erysipelothrix rhusiopahiae clinical strain SG7 was determined, and the whole genome sequence and the surface protective antigen A (SpaA) gene were analyzed using bioinformatics method. The full length of SG7 genome was 1 834 291.00 bp, and the total quantity of the predicted genes were 1 846 with a G+C content of 36.3%. Different degrees of differences of genomic basic information between different strains were found by comparing the complete genome sequences of SG7 and eight E. rhusiopahiae found in GenBank. Phylogenetic analysis based on genome-wide single nucleotide polymorphisms (SNPs) revealed that nine strains could be clustered into three distinct clades, and strains isolated from China were not in the same clade, while SG7 and common strains isolated from China did not belong to the same clade. The analysis results of hypervariable region of SpaA showed that nine strains could also be divided into three SpaA types, and SG7 was a highly pathogenic strain carrying Met203. Except for SG7, the SpaA genotyping results of other eight strains were consistent with the analytic results obtained based on the genome-wide SNPs analysis, which indicated that the genetic background of SG7 was complex. The results can provide data basis for the research at the whole genome level and development of E. rhusiopahiae vaccine.

参考文献/References:

[1]GORBY G L, PEACOCK J E. Erysipelothrix rhusiopathiae endocarditis: microbiologic, epidemiologic, and clinical features of an occupational disease[J]. Reviews of Infectious Diseases, 1988, 10(2): 317-325.
[2]WANG Q, CHANG B J, RILEY T V. Erysipelothrix rhusiopathiae [J].Veterinary Microbiology, 2010, 140(3/4):405-417.
[3]周绪斌,丹尼,李聪,等. 猪丹毒——古老的传染病是否从中国规模化猪场消失了?[J].今日养猪业,2009(5):22-24.
[4]李文春,杨仕标,李富祥. 一株猪丹毒杆菌的分离鉴定及SpaA基因序列分析[J].上海畜牧兽医通讯,2020(3):9-12.
[5]周作勇,李和贤,杨浩钺,等. 伪结核棒状杆菌毒力因子的研究进展[J].中国人兽共患病学报, 2017,33(12):1115-1119.
[6]BORRATHYBAY E, GONG F J, ZHANG L, et al. Role of surface protective antigen A in the pathogenesis of Erysipelothrix rhusiopathiae strain C43065[J]. Journal of Microbiology and Biotechnology, 2015, 25(2):206-216.
[7]HARADA T, OGAWA Y, EGUCHI M, et al. Phosphorylcholine and SpaA, a choline-binding protein, are involved in the adherence of Erysipelothrix rhusiopathiae to porcine endothelial cells, but this adherence is not mediated by the PAF receptor[J]. Veterinary Microbiology, 2014, 172 (1/2):216-222.
[8]吾鲁木汗·那孜尔别克,张磊,何翠,等. 猪丹毒丝菌天然SpaA和重组SpaA-N免疫保护效果的评价[J].微生物学报, 2010,50(3):367-372.
[9]姚焱彬,陆萍,杨志鹏,等. 猪丹毒丝菌SpaA基因原核表达及表达蛋白质的免疫原性分析[J].畜牧兽医学报,2017,48(3):492-500.
[10]蒋志琼,钟泽民,谭博敏,等. 丹毒丝菌SpaA基因免疫保护区的克隆及其在毕赤酵母中的表达[J].华南农业大学学报,2015,36(3):20-25.
[11]周江林,彭小川,胡明达,等. 基于全基因组测序的细菌进化研究进展[J].生物技术通讯,2018, 29(6):844-850.
[12]周迪,杨旭夫,彭凌. 红斑丹毒丝菌的分离鉴定及药敏试验[J].动物医学进展,2020,41(2):33-38.
[13]BOLGER A M, LOHSE M, USADEL B. Trimmomatic: a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014,30(15):2114-2120.
[14]BANKEVICH A, NURK S, ANTIPOV D, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing[J]. Journal of Computational Biology, 2012,19(5):455-477.
[15]MASSOURAS A, HENS K, GUBELMANN C, et al. Primer-initiated sequence synthesis to detect and assemble structural variants[J]. Nature Methods, 2010,7(7):485-486.
[16]SEEMANN T. Prokka: rapid prokaryotic genome annotation[J]. Bioinformatics, 2014,30(14):2068-2069.
[17]UCHIYAMA M, YAMAMOTO K, OCHIAI M, et al. Prevalence of Met-203 type SpaA variant in Erysipelothrix rhusiopathiae isolates and the efficacy of swine erysipelas vaccines in Japan[J].Biologicals,2014,42(2):109-113.
[18]OGAWA Y, SHIRAIWA K, OGURA Y, et al. Clonal lineages of Erysipelothrix rhusiopathiae responsible for acute swine erysipelas in Japan identified by using genome-wide single nucleotide polymorphism analysis [J]. Applied & Environmental Microbiology, 2017, 83(11): e00130-17.
[19]TATUSOV R L, GALPERIN M Y, NATALE D A, et al. The COG database: a tool for genome-scale analysis of protein functions and evolution[J]. Nucleic Acids Research,2000, 28(1):33-36.
[20]KANEHISA M, GOTO S. KEGG: kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Research, 2000,28 (1):27-30.
[21]CHEN L, ZHENG D, LIU B, et al. VFDB 2016: hierarchical and refined dataset for big data analysis-10 years on[J]. Nucleic Acids Research, 2016, 44:D694-D697.
[22]MCARTHUR A G, WAGLECHNER N, NIZAM F, et al. The comprehensive antibiotic resistance database[J]. Antimicrobial Agents and Chemotherapy, 2013, 57(7):3348-3357.
[23]URBAN M, PANT R, RAGHUNATH A, et al. The pathogen-host interactions database (PHI-base): additions and future developments[J]. Nucleic Acids Research, 2015, 43:D645-D655.
[24]姚焱彬. 猪丹毒丝菌灭活疫苗的制备及其对小鼠的免疫效力研究[D].合肥:安徽农业大学,2018.
[25]张珍,施开创,王孝德,等. 2015-2017年广西鸡源沙门氏菌耐药性与致病性的相关性分析[J].南方农业学报,2019,50(10):2350-2358.
[26]徐重新,刘敏,张霄,等. 农药危害风险及其残留检测用广谱特异性抗体研究进展[J] .江苏农业学报,2019,35(2):489-496.
[27]王志芳,雷燕,肖俊,等. 广西罗非鱼主产区养殖池塘抗生素残留状况分析[J].南方农业学报,2019,50(4):891-897.
[28]胡晓芬,王静,熊剑锋,等. 一起猪丹毒杆菌病例的临床分离鉴定及诊治[J].养猪,2014(2):107-109.
[29]王力波. 猪丹毒丝菌广西分离株生物学特性研究及其基因组生物信息学分析[D].长春:吉林农业大学,2015.
[30]曹文尧. 丹毒丝菌表面保护抗原A作为重组亚单位疫苗和核酸疫苗的初步研究[D].乌鲁木齐:新疆大学,2007.
[31]CUI Y, LI D, YANG R. Shiga toxin-producing Escherichia coli O104∶H4:an emerging important pathogen in food safety[J]. Chinese Science Bulletin, 2013, 58(14):1625-1631.
[32]FORDE T, BIEK R, ZADOKS R, et al. Genomic analysis of the multi-host pathogen Erysipelohrix rhusiopathiae reveals extensive recombination as well as the existence of three generalist clades with wide geographic distribution[J]. BMC Genomics, 2016, 461(17):1-15.

备注/Memo

备注/Memo:
收稿日期:2020-09-07基金项目:广东省自然科学基金项目(2017A030307041);国家级大学生创新创业训练计划项目(201910576002)作者简介:彭凌(1975-),男,江西奉新人,硕士,副教授,主要从事动物病原微生物及分子生物学研究。(E-mail)308668576@qq.com
更新日期/Last Update: 2021-07-05