[1]沈丹,杨莉,胡威,等.柑橘胁迫响应基因WRKY47的克隆与表达分析[J].江苏农业学报,2021,(01):129-138.[doi:doi:10.3969/j.issn.1000-4440.2021.01.017]
 SHEN Dan,YANG Li,HU Wei,et al.Cloning and expression analysis of stress response gene WRKY47 in citrus[J].,2021,(01):129-138.[doi:doi:10.3969/j.issn.1000-4440.2021.01.017]
点击复制

柑橘胁迫响应基因WRKY47的克隆与表达分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年01期
页码:
129-138
栏目:
园艺
出版日期:
2021-02-28

文章信息/Info

Title:
Cloning and expression analysis of stress response gene WRKY47 in citrus
作者:
沈丹杨莉胡威匡柳青郭文芳卢婷刘德春刘勇
(江西农业大学农学院,江西南昌330045)
Author(s):
SHEN DanYANG LiHU WeiKUANG Liu-qingGUO Wen-fangLU TingLIU De-chunLIU Yong
(College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China)
关键词:
柑橘WRKY非生物胁迫基因克隆表达分析
Keywords:
citrusWRKYabiotic stressgene cloningexpression analysis
分类号:
Q785
DOI:
doi:10.3969/j.issn.1000-4440.2021.01.017
文献标志码:
A
摘要:
以柠檬[Citrus limon (L.) Burm.f.]、甜橙[Citrus sinensis (L.) Osbeck]、芦柑(Citrus reticulata Blanco)、金柑[Fortunella japonica (Thunb.) Swingle]为试验材料,基于甜橙基因组数据库中的甜橙基因碱基序列,利用RT-PCR方法克隆获得4个WRKY家族基因ClWRKY47、CsWRKY47、CrWRKY47和FjWRKY47的cDNA全长碱基序列。序列分析结果表明,这4个基因的cDNA全长都是1 567 bp,开放阅读框为1 506 bp,编码501个氨基酸。氨基酸序列和结构分析结果显示,这4个基因编码的蛋白质属于Group IIa+IIb类WRKY蛋白。进化树分析结果显示,所克隆的4个柑橘WRKY蛋白与克莱门柚WRKY47蛋白的亲缘关系最近。对CsWRKY47启动子顺式作用元件预测分析,发现CsWRKY47启动子包含脱落酸响应元件(ABRE)、茉莉酸甲酯响应元件(CGTCA-motiF)、抗氧化响应元件(ARE)、参与干旱诱导的MYB结合位点(MBS)等多个与胁迫相关的顺式作用元件。实时荧光定量表达分析结果表明,柠檬ClWRKY47和甜橙CsWRKY47能被高盐、干旱、低温胁迫诱导表达;芦柑CrWRKY47在干旱和低温胁迫下诱导表达,高盐胁迫下表达量下调;金柑FjWRKY47 在高盐胁迫下诱导表达,干旱和低温胁迫下下调表达。为进一步开展柑橘胁迫相关基因WRKY47的功能鉴定奠定了基础。
Abstract:
Based on the Citrus sinensis gene base sequences contained in the sweet orange genome database, the cDNAs sequences of four WRKY family genes ClWRKY47, CsWRKY47, CrWRKY47 and FjWRKY47 were cloned from lemon [Citrus limon (L.) Burm.f.], sweet orange [Citrus sinensis (L.) Osbeck], ponkan (Citrus reticulata Blanco) and kumquat [Fortunella japonica (Thunb.) Swingle] by RT-PCR, respectively. The results of sequence analysis showed that the cDNA of these four genes were 1 567 bp in length, the open reading frame (ORF) was 1 506 bp, and 501 amino acids were encoded. The results of amino acid sequence and structure analysis demonstrated that the proteins encoded by these four genes belonged to the Group IIa+IIb WRKY protein. Phylogenetic tree analysis results indicated that the four citrus WRKY proteins were closely related to the Citrus clementine WRKY47 protein. Predictive cis-acting element analysis of CsWRKY47 promoter revealed that CsWRKY47 promoter contained abscisic acid response element (ABRE), methyljasmonic acid response element (CGTCA-motiF), anaerobic response element (ARE), MYB binding site involved in drought-response (MBS) and many other stress-related cis-acting elements. Real-time fluorescence quantitative PCR analysis suggested that the expression levels of ClWRKY47 and CsWRKY47 were induced by drought, low temperature and high salt. Besides, the expression of CrWRKY47 was induced under drought and low temperature stress, but suppressed under high salt stress. However, the expression level of FjWRKY47 was upregulated under high salt stress and suppressed under drought and low temperature stress. These results lay a foundation for further functional identification of the stress-related gene WRKY47 in citrus.

参考文献/References:

[1]HIRAYAMA T, SHINOZAKI K. Research on plant abiotic stress responses in the post-genome era: past, present and future[J]. The Plant Journal, 2010,61(6): 1041-1052.
[2]LIU J H, PENG T, DAI W. Critical cis-acting elements and interacting transcription factors: key players associated with abiotic stress responses in plants[J]. Plant Molecular Biology Reporter, 2014, 32(2):303-317.
[3]REN X, CHEN Z, LIU Y, et al. ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in arabidopsis[J]. Plant Journal for Cell & Molecular Biology, 2010, 63(3):417-429.
[4]XU Z S, CHEN M, LI L C, et al. Functions and application of the AP2/ERF transcription factor family in crop improvcmcn[J].J Integr Plaint Piol,2011,53(7):570-585.
[5]ISHIGURO S, NAKAMURA K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5′ upstream regions of genes coding for sporamin and beta-amylase from sweet potato [J]. Molecular & General Genetics Mgg, 1994, 244(6):563-571.
[6]EULGEM T , RUSHTON P J , ROBATZEK S , et al. The WRKY superfamily of plant transcription factors.[J]. Trends in Plant ence, 2000, 5(5):199-206.
[7]CHEN L G, SONG Y, LI S J, et al. The role of WRKY transcription factors in plant abiotic stresses [J]. Biochim Biophys Acta, 2012, 1819 (2): 120-128.
[8]QIU Y , JING S , FU J , et al. Cloning and analysis of expression profile of 13 WRKY genes in rice[J]. Chinese Science Bulletin, 2004, 49(20):2159-2168.
[9]JIANG Y, DEYHOLOS M K. Comprehensive transcriptional profiling of NaCl-stressed arabidopsis roots reveals novel classes of responsive genes[J]. BMC Plant Biol, 2006,6:25.
[10]徐丽,陈新,宗晓娟,等. 樱桃砧木PcWRKY1基因的克隆与表达分析[J].江苏农业学报,2018,34(3):636-641.
[11]WANG X, LI J, GUO X, et al. PlWRKY13: a transcription factor involved in abiotic and biotic stress responses in paeonia lactiflora[J]. Int J Mol Sci, 2019,20(23):5953.
[12]钱靓雯. WRKY47在植物硒富积及耐受中的作用研究[D].合肥:合肥工业大学,2018.
[13]孟云. 拟南芥WRKY47基因在镉胁迫应答中的作用机理研究[D].合肥:合肥工业大学,2019.
[14]RAINERI J, WANG S, PELEG Z, et al. The rice transcription factor OsWRKY47 is a positive regulator of the response to water deficit stress[J]. Plant Molecular Biology, 2015, 88(4/5):401-413.
[15]郭文芳. 柑橘抗逆相关基因NAC83、MYB15和COR15a的克隆与表达分析[D].南昌:江西农业大学,2015.
[16]LLORCA C M, POTSCHIN M, ZENTGRAF U. bZIPs and WRKYs: two large transcription factor families executing two different functional strategies[J]. Frontiers in Plant Science, 2014,5:169.
[17]RUSHTON D L, TRIPATHI P, RABARA R C, et al. WRKY transcription factors: key components inabscisic acid signaling[J]. Plant Biotechnol, 2012,10:2-11.
[18]LIU Y, YANG T, LIN Z, et al. A WRKY transcription factor PbrWRKY53 from Pyrus betulaefolia is involved in drought tolerance and AsA accumulation[J]. Plant Biotechnol J, 2019,17:1770-1787.
[19]GUO H, WANG Y, WANG L, et al. Expression of the MYB transcription factor gene BplMYB46 affects abiotic stress tolerance and secondary cell wall deposition in Betula platyphylla[J]. Plant Biotechnol J, 2017,15:107-121.
[20]魏鑫,王寒涛,魏恒玲,等. 陆地棉GhWRKY33的克隆及抗旱功能分析[J].中国农业科学,2020,53(22):4537-4549.
[21]郭晋艳,郑晓瑜,邹翠霞,等. 植物非生物胁迫诱导启动子顺式元件及转录因子研究进展[[J].生物技术通报,2011 (4):16-20.
[22]赵晋锋,余爱丽,王寒玉,等. 非生物逆境胁迫下ZmCIPK10基因表达分析[J].生物技术进展,2011,1(2):130-134.
[23]刘彦丹,英生,张登峰,等. 玉米逆境胁迫响应基因ZmbZIP71的克隆与表达分析[J].植物遗传资源学报,2011,12(5):775-781.
[24]TURCK F, ZHOU A, SOMSSICH I E. Stimulus-dependent, promoter-specific binding of transcription factor WRKY1 to Its native promoter and the defense-related gene PcPRl-1 in Parsley[J]. Plant Cell, 2004,16:2573-2585.
[25]LI S, FU Q, CHEN L, et al. Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance[J]. Planta,2011, 233(6):1237-1252.
[26]蔡荣号,李尉,陈浩伟,等. 异源表达玉米ZmWRKY114基因增强拟南芥对盐胁迫的敏感性[J].安徽农业大学学报,2019,46(6):1040-1047.
[27]ZOU C, JIANG W, YU D. Male gametophyte-specific WRKY34 transcription factor mediates cold sensitivity of mature pollen in Arabidopsis[J]. J Exp Bot, 2010,61(14):3901-3914.
[28]XIANG Y, HUANG Y, XIONG L. Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement[J]. Plant physiology, 2007, 144(3):1416.
[29]LEE S K, KIM B G, KWON T R, et al. Overexpression of the mitogen-activated protein kinase gene OsMAPK33 enhances sensitivity to salt stress in rice (Oryza sativa L.)[J]. J Biosci, 2011,36(1):139-151.
[30]JIANG Y Z, DUAN Y J, YIN J, et al. Genome-wide identification and characterization of the populus WRKY transcription factor family and analysis of their expression in response to biotic and abiotic stresses[J]. Journal of Experimental Botany,2014,9(22):22.

备注/Memo

备注/Memo:
收稿日期:2020-10-13基金项目:国家重点研发计划项目(2019YFD1000100);国家自然科学基金项目(31701896);江西省自然科学基金面上项目(20202BAB205001);江西省柑橘产业技术体系项目(JXARS-07-栽培岗位)作者简介:沈丹(1996-),女,江苏溧阳人,硕士研究生,研究方向为果树抗逆生理。(E-mail)sd17751769221@163.com通讯作者:刘德春,(E-mail)ldc873380800@163.com;刘勇,(E-mail)liuyongjxau@163.com
更新日期/Last Update: 2021-03-15