[1]李隐侠,郭潇潇,张俊,等.湖羊转录因子CTCF基因序列分析及其对NR5A1基因转录活性的调控[J].江苏农业学报,2020,(06):1482-1488.[doi:doi:10.3969/j.issn.1000-4440.2020.06.018]
 LI Yin-xia,GUO Xiao-xiao,ZHANG Jun,et al.Sequence analysis of transcription factor CTCF and its regulation on transcription activity of NR5A1 gene in Hu sheep[J].,2020,(06):1482-1488.[doi:doi:10.3969/j.issn.1000-4440.2020.06.018]
点击复制

湖羊转录因子CTCF基因序列分析及其对NR5A1基因转录活性的调控()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年06期
页码:
1482-1488
栏目:
畜牧兽医·水产养殖
出版日期:
2020-12-31

文章信息/Info

Title:
Sequence analysis of transcription factor CTCF and its regulation on transcription activity of NR5A1 gene in Hu sheep
作者:
李隐侠12郭潇潇1张俊12孟春花12钱勇12仲跻峰12曹少先12
(1.江苏省农业科学院畜牧研究所,江苏南京210014;2.江苏省农业部种质资源保护与利用平台, 江苏南京210014)
Author(s):
LI Yin-xia12GUO Xiao-xiao1ZHANG Jun12MENG Chun-hua12QIAN Yong12ZHONG Ji-feng12CAO Shao-xian12
(1.Institute of Animal Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;2.The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China)
关键词:
转录因子CTCF表达特征NR5A1 基因转录活性
Keywords:
transcription factor CTCFexpression characteristicsNR5A1 genetranscription activity
分类号:
Q786
DOI:
doi:10.3969/j.issn.1000-4440.2020.06.018
文献标志码:
A
摘要:
转录因子CTCF在动物生长发育过程中发挥重要的调控作用,但其在绵羊中的序列特征、组织器官表达及功能目前尚不清楚。本研究以湖羊CTCF基因为研究对象,采用PCR方法克隆获得其编码区全序列,发现其序列全长2 187 bp,编码727个氨基酸残基,含有11个连续的锌指结构域。组织器官表达谱分析发现CTCF基因在湖羊各个组织器官中广泛表达,在子宫中表达量相对较低,在胃中表达量相对较高。JASPAR在线软件预测发现核受体NR5A1基因内含子(翻译起始位点ATG前393 bp片段)含有3个CTCF结合位点,双荧光素酶试验结果显示,CTCF结合位点突变后NR5A1基因转录活性显著或极显著下降,表明CTCF可能通过调控NR5A1基因转录参与调控湖羊繁殖性能。
Abstract:
Transcription factor CTCF plays an important regulatory role in growth and development of animals, but its sequence characteristics, tissues and organs expression and function in sheep are still unclear. In this study, CTCF gene of Hu sheep was used as research object, the full coding sequence of CTCF was cloned by RT-PCR. The result showed that the full-length sequence of CTCF was 2 187 bp, encoding 727 amino acids and containing 11 consecutive zinc finger domains. CTCF gene was widely expressed in various tissues and organs of Hu sheep, with a relatively low expression in uterus and a relatively high expression in stomach. Predication results showed that the intron (the 393 bp fragment before translation initiation site ATG) of nuclear receptor NR5A1 gene contained three CTCF binding sites by the JASPAR online software. The results of dual luciferase assay showed that the transcription activity of NR5A1 gene decreased significantly or extrenely significantly when the CTCF binding sites were mutated, indicating that CTCF participated in the regulation of reproductive performance of Hu sheep by regulating NR5A1 gene transcription.

参考文献/References:

[1]FILIPPOVA G N. Genetics and epigenetics of the multifunctional protein CTCF[J]. Curr Top Dev Biol, 2008, 80:337-360.
[2]ARZATE-MEJA R G, RECILLAS-TARGA F, CORCES V G. Developing in 3D: the role of CTCF in cell differentiation[J]. Development,2018, 145(6):137729.
[3]FEDORIW A M, STEIN P, SVOBODA P, et al. Transgenic RNAi reveals essential function for CTCF in H19 gene imprinting[J]. Science, 2004, 303(5655): 238-240.
[4]MERKENSCHLAGER M, NORA E P. CTCF and cohesin in genome folding and transcriptional gene regulation[J]. Annu Rev Genomics Hum Genet, 2016, 17: 17-43.
[5]CARMONA-ALDANA F, ZAMPEDRI C, SUASTE-OLMOS F, et al. CTCF knockout reveals an essential role for this protein during the zebrafish development[J]. Mech Dev, 2018, 154: 51-59.
[6]WAN L B, PAN H, HANNENHALLI S, et al. Maternal depletion of CTCF reveals multiple functions during oocyte and preimplantation embryo development[J]. Development,2008, 135(16): 2729-2738.
[7]RIBEIRO D E ALMEIDA C, STADHOUDERS R, DE BRUIJN M J W, et al. The DNA-binding protein CTCF limits proximal Vκ recombination and restricts κ enhancer interactions to the immunoglobulin κ light chain locus[J]. Immunity,2011, 35(4): 501-513.
[8]HIRAYAMA T, TARUSAWA E, YOSHIMURA Y, et al. CTCF is required for neural development and stochastic expression of clustered Pcdh genes in neurons[J]. Cell Rep,2012, 2(2): 345-357.
[9]HERNNDEZ-HERNNDEZ A, LILIENTHAL I, FUKUDA N, et al. CTCF contributes in a critical way to spermatogenesis and male fertility[J]. Sci Rep,2016, 6: 28355.
[10]LOBANENKOV V V, NICOLAS R H, ADLER V V, et al. A novel sequence-specific DNA binding protein which interacts with three regularly spaced direct repeats of the CCCTC-motif in the 5′-flanking sequence of the chicken c-myc gene[J]. Oncogene,1990, 5: 1743-1753.
[11]BANIAHMAD A, STEINER C, KHNE A C, et al. Modular structure of a chicken lysozyme silencer: involvement of an unusual thyroid hormone receptor binding site[J]. Cell,1990, 61: 505-514.
[12]OUBOUSSAD L, KREUZ S, LEFEVRE P F. CTCF depletion alters chromatin structure and transcription of myeloid-specific factors[J]. J Mol Cell Biol,2013, 5: 308-322.
[13]郑晓飞,黄海燕,吴强. 染色质构架蛋白CTCF调控UGT1基因簇的表达[J]. 遗传, 2019,41(6):509-523.
[14]BEISHLINE K, VLADIMIROVA O, TUTTON S, et al. CTCF driven TERRA transcription facilitates completion of telomere DNA replication[J]. Nat Commun,2017, 8(1): 2114.
[15]李隐侠,张俊,钱勇,等. 湖羊NR5A1基因全序列克隆和表达特征分析[J]. 江苏农业学报, 2019, 35(1): 114-121.
[16]LI Y, ZHANG J, QIAN Y, et al. Mutation -388 C>G of NR5A1 gene affects litter size and promoter activity in sheep[J]. Anim Reprod Sci,2018, 196: 19-27.
[17]李隐侠,张俊,钱勇,等. 湖羊NR5A1基因SNPs筛选及其与产羔数的关联分析[J]. 江苏农业学报,2017, 33(1): 124-132.
[18]SEITAN VC, KRANGEL MS, MERKENSCHLAGER M. Cohesin, CTCF and lymphocyte antigen receptor locus rearrangement[J]. Trends Immunol,2012, 33: 153-159.
[19]OHLSSON R, BARTKUHN M, RENKAWITZ R. CTCF shapes chromatin by multiple mechanisms: the impact of 20 years of CTCF research on understanding the workings of chromatin[J]. Chromosoma,2010, 119: 351-360.
[20]ZENG Z, HUANG N, ZHANG Y, et al. CTCF inhibits endoplasmic reticulum stress and apoptosis in cardiomyocytes by upregulating RYR2 via inhibiting S100A1[J]. Life Sci,2020, 242: 117158.
[21]CHEN X, KE Y, WU K, et al. Key role for CTCF in establishing chromatin structure in human embryos[J]. Nature,2019, 576(7786): 306-310.
[22]MOORE J M, RABAIA N A, SMITH L E, et al. Loss of maternal CTCF is associated with peri-implantation lethality of Ctcf null embryos[J]. PLoS One,2012, 7: e34915.
[23]WATSON LA, WANG X, ELBERT A, et al. Dual effect of CTCF loss on neuroprogenitor differentiation and survival[J]. J Neurosci,2014, 34: 2860-2870.
[24]ARZATE-MEJíA R G, RECILLAS-TARGA F, CORCES V G. Developing in 3D: the role of CTCF in cell differentiation[J]. Developmet,2018, 145(6): 137729.
[25]PHILLIPS J E, CORCES V G. CTCF: master weaver of the genome[J]. Cell,2009, 137(7): 1194-1211.
[26]VOSTROV A A, QUITSCHKE W W. The zinc finger protein CTCF binds to the APB beta domain of the amyloid beta-protein precursor promoter. Evidence for a role in transcriptional activation[J]. J Biol Chem, 1997, 272(52): 33353-33359.
[27]苏节,朱鹏,刘庆友,等. 水牛转录抑制因子CTCF基因克隆分析及不同组织中的表达研究[J]. 中国畜牧兽医, 2013, 40(3): 1-6.
[28]UENISHI H, EGUCHI T, SUZUKI K, et al. PEDE (pig EST data explorer): construction of a database for ESTs derived from porcine full-length cDNA libraries[J]. Nucleic Acids Res, 2004, 32 (Suppl): D484-D488.
[29]LUTZ M, BURKE LJ, BARRETO G, et al. Transcription repression by the insulator protein CTCF involves histone deacetylases[J]. Nucl Acids Res, 2000, 28(8): 1707-1713.
[30]PUGACHEVA E M, KWON Y W, HUKRIEDE N A, et al. Cloning and characterization of zebrafish CTCF: developmental expression patterns, regulation of the promoter region, and evolutionary aspects of gene organization[J]. Gene,2006, 375: 26-36.
[31]HASHIMOTO H, WANG D, HORTON J R, et al. Structural basis for the versatile and methylation-dependent binding of CTCF to DNA[J]. Mol Cell, 2017, 66: 711-720.
[32]FILIPPOVA G N, FAGERLIE S, KLENOVA E M, et al. An exceptionally conserved transcriptional repressor, CTCF, employs different combinations of zinc fingers to bind diverged promoter sequences of avian and mammalian c-myc oncogenes[J]. Mol Cell Biol,1996, 16(6): 2802-2813.
[33]KUZMIN I, GEIL L, GIBSON L, et al. Transcriptional regulator CTCF controls human interleukin 1 receptor-associated kinase 2 promoter[J]. J Mol Biol,2005, 346 (2): 411-422.
[34]AWAD T A, BIGLER J, ULMER J E, et al. Negative transcriptional regulation mediated by thyroid hormone response element 144 requires binding of the multivalent factor CTCF to a novel target DNA sequence[J]. J Biol Chem,1999, 274 (38): 27092-27098.
[35]TORRANO V, CHERNUKHIN I, DOCQUIER F, et al. CTCF regulates growth and erythroid differentiation of human myeloid leukemia cells[J]. J Biol Chem,2005, 280 (30): 28152-28161.
[36]RUIZ-VELASCO M, KUMAR M, LAI M C, et al. CTCF-mediated chromatin loops between promoter and gene body regulate alternative splicing across individuals[J]. Cell Syst,2017, 5(6): 628-637.
[37]LANNI S, GORACCI M, BORRELLI L, et al. Role of CTCF protein in regulating FMR1 locus transcription[J]. PLoS Genet,2013, 9(7): e1003601.
[38]BATLLE-LPEZ A, CORTIGUERA M G, ROSA-GARRIDO M, et al. Novel CTCF binding at a site in exon1A of BCL6 is associated with active histone marks and a transcriptionally active locus[J]. Oncogene,2015, 34(2): 246-256.
[39]MARTíNEZ F P, CRUZ R, LU F, et al. CTCF binding to the first intron of the major immediate early (MIE) gene of human cytomegalovirus (HCMV) negatively regulates MIE gene expression and HCMV replication[J]. J Virol,2014, 88(13): 7389-7401.
[40]KIM KW, LI S, ZHAO H, et al. CNS-specific ablation of steroidogenic factor 1 results in impaired female reproductive function[J]. Mol Endocrinol,2010, 24(6): 1240-1250.
[41]YIN M, L M, YAO G, et al. Transactivation of microRNA-383 by steroidogenic factor-1 promotes estradiol release from mouse ovarian granulosa cells by targeting RBMS1[J]. Mol Endocrinol,2012, 26(7): 1129-1143.
[42]JEYASURIA P, IKEDA Y, JAMIN S P, et al. Cell-specific knockout of steroidogenic factor 1 reveals its essential roles in gonadal function[J]. Mol Endocrinol,2004, 18(7): 1610-1619.
[43]BUAAS F W, GARDINER J R, CLAYTON S, et al. In vivo evidence for the crucial role of SF1 in steroid-producing cells of the testis, ovary and adrenal gland[J]. Development,2012, 139(24): 4561-4570.

相似文献/References:

[1]裴徐梨,荆赞革,徐境,等.青花菜BoDof5.3基因的克隆及渍水胁迫表达特征分析[J].江苏农业学报,2020,(06):1498.[doi:doi:10.3969/j.issn.1000-4440.2020.06.020]
 PEI Xu-li,JING Zan-ge,XU Jing,et al.Cloning and expression analysis of BoDof5.3 gene under waterlogging stress in broccoli[J].,2020,(06):1498.[doi:doi:10.3969/j.issn.1000-4440.2020.06.020]

备注/Memo

备注/Memo:
收稿日期:2020-02-24基金项目:江苏省自然科学基金项目(BK20140750);江苏省农业科技自主创新基金项目[CX(18)3004];江苏省现代农业重点项目(BE2019373)作者简介:李隐侠(1979-),女,河南固始人,博士,副研究员,主要从事动物遗传育种与繁殖方面的研究。(E-mail) liyxmh@jaas.ac.cn通讯作者:曹少先,(E-mail)sxcao@jaas.ac.cn
更新日期/Last Update: 2021-01-15