[1]孟庆宽,杨晓霞,刘易,等.自然光照环境下基于人工蜂群算法的农业移动机器人视觉导航线提取[J].江苏农业学报,2020,(04):919-929.[doi:doi:10.3969/j.issn.1000-4440.2020.04.016]
 MENG Qing-kuan,YANG Xiao-xia,LIU Yi,et al.Guidance line extraction for agricultural mobile robot based on artificial bee colony algorithm under natural light condition[J].,2020,(04):919-929.[doi:doi:10.3969/j.issn.1000-4440.2020.04.016]
点击复制

自然光照环境下基于人工蜂群算法的农业移动机器人视觉导航线提取()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年04期
页码:
919-929
栏目:
耕作栽培·资源环境
出版日期:
2020-08-31

文章信息/Info

Title:
Guidance line extraction for agricultural mobile robot based on artificial bee colony algorithm under natural light condition
作者:
孟庆宽12杨晓霞1刘易1刘永江1张振仪1
(1.天津职业技术师范大学自动化与电气工程学院,天津300222;2.天津市信息传感与智能控制重点实验室,天津300222)
Author(s):
MENG Qing-kuan12YANG Xiao-xia1LIU Yi1LIU Yong-jiang1ZHANG Zhen-yi1
(1.College of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin 300222, China;2.Tianjin Key Laboratory of Information Sensing and Intelligent Control, Tianjin 300222, China)
关键词:
农业移动机器人机器视觉导航线识别图像熵人工蜂群算法
Keywords:
agricultural mobile robotmachine visionguidance line recognitionimage entropyartificial bee colony algorithm
分类号:
S126
DOI:
doi:10.3969/j.issn.1000-4440.2020.04.016
文献标志码:
A
摘要:
为了解决常规农业移动机器人导航基准线提取方法存在识别速度慢、检测精度低以及对光照变化敏感等问题,提出1种自然光照环境下基于人工蜂群算法的视觉导航路径提取方法。首先,将视觉传感器获取的作物图像进行灰度化处理,通过图像熵对灰度图像质量进行估计,当光照条件变化时,在线调整摄像机曝光时间,使获取的图像质量达到最佳状态,以提高后续图像处理对光照变化的适应能力。然后,采用类间最大方差法对图像进行分割,将作物信息与土壤背景分离,运用形态学滤波方法消除分割图像中的杂草噪声。最后,对图像顶部和底部分别进行灰度垂直投影,获取作物行区域并提取作物行特征点,利用人工蜂群算法搜索2个特征点,使其构成的直线所含目标点数最多,并将这条直线作为作物行中心线,进而得到导航路径。结果表明,在不同光照度条件下,基于图像熵的曝光时间调整方法可以有效降低光照度变化对后续图像处理的影响;基于人工蜂群算法的导航基准线提取方法可以快速有效地识别作物行与导航路径,处理1幅640×480像素的图像平均耗时76.4 ms,与传统导航基准线提取方法(Hough变换算法、最小二乘法)相比,人工蜂群算法具有检测速度快、准确性高的特点。本研究提高了应用于田间作业的农业移动机器人导航路径识别精度。
Abstract:
To solve the problems such as slow recognition speed, low detection accuracy and sensitive to illumination variation in extraction methods for navigation reference lines of conventional agricultural mobile robots, a new navigation line extraction method based on artificial bee colony algorithm under natural light condition was proposed. Firstly, the crop images obtained by visual sensor were grayed, and image entropy was used to estimate the quality of the images. When the illumination condition varied, exposure time of the vidicon was adjusted online to make the quality of the obtained images in the best condition, so as to enhance the adaptability of further image processing to illumination variation. Secondly, the Otsu algorithm was used to separate the crop information from soil background, the redundant information of weeds in the binary images was eliminated by morphological filtering algorithm. Finally, grey vertical projection method was adopt on the top and bottom of the images to obtain the position of crop row and extract feature points. Two feature points were searched by artificial bee colony algorithm, and the formed straight line included the most target points and was used as the center line of crop rows, then the navigation path was obtained. The results showed that exposure time adjustment method based on image entropy could effectively reduce the effect of illumination variation on following image processing under different illumination conditions. The guidance line extraction method based on artificial bee colony algorithm could recognize crop rows and navigation path quickly and effectively. The time for processing an image with 640×480 pixels was about 76.4 ms. Compared with conventional guidance line extraction algorithms, the artificial bee colony algorithm showed the advantages of fast detection and high accuracy. The research improves the recognition accuracy of navigation path for agricultural mobile robots working in the fields.

参考文献/References:

[1]ZHANG Y, STAAB E S, SLAUGHTER D C, et al. Automated weed control in organic row crops using hyper spectral species identification and thermal micro-dosing[J]. Crop Protection, 2012, 41: 96-105.
[2]胡静涛,高雷,白晓平,等. 农业机械自动导航技术研究进展[J]. 农业工程学报,2015,31(10):1-10.
[3]安秋,李志臣,姬长英,等. 基于光照无关图的农业机器人视觉导航算法[J].农业工程学报,2009,25(11):208-212.
[4]JIANG G Q,WANG X J,WANG Z H,et al. Wheat rows detection at the early growth stage based on Hough transform and vanishing point[J]. Computers and Electronics in Agriculture, 2016, 123:211-223.
[5]高国琴,李明. 基于K-means算法的温室移动机器人导航路径识别[J].农业工程学报,2014,30(7): 25-33.
[6]罗陆锋,邹湘军,熊俊涛,等. 自然环境下葡萄采摘机器人采摘点的自动定位[J].农业工程学报,2015,31(2):14-21.
[7]熊俊涛,邹湘军,王红军,等. 基于Retinex图像增强的不同光照条件下的成熟荔枝识别[J]. 农业工程学报,2013,29(12):170-178.
[8]GE C, BOSSU J, JONES G, et al. Crop/weed discrimination in perspective agronomic images[J]. Computers and Electronics in Agriculture, 2008, 60(1):49-59.
[9]刁智华,赵明珍,宋寅卯,等. 基于机器视觉的玉米精准施药系统作物行识别算法及系统实现[J].农业工程学报,2015,31(7):47-52.
[10]司永胜,姜国权,刘刚,等. 基于最小二乘法的早期作物行中心线检测方法[J]. 农业机械学报,2010,41(7):163-167.
[11]姜国权,杨小亚,王志衡,等. 基于图像特征点粒子群聚类算法的麦田作物行检测[J]. 农业工程学报,2017,33(11):165-170.
[12]何洁,孟庆宽,张漫,等. 基于边缘检测与扫描滤波的农机导航基准线提取方法[J]. 农业机械学报,2014,45(增刊):265-270.
[13]孟庆宽,张漫,杨耿煌,等.自然光照下基于粒子群算法的农业机械导航路径识别[J].农业机械学报,2016,47(6): 11-20.
[14]刁智华,吴贝贝,毋媛媛,等. 基于最大正方形的玉米作物行骨架提取算法[J]. 农业工程学报,2015,31(23):168-172.
[15]陈子文,李伟,张文强,等. 基于自动Hough变换累加阈值的蔬菜作物行提取方法研究[J]. 农业工程学报,2019,35(22):314-322.
[16]关卓怀,陈科尹,丁幼春,等.水稻收获作业视觉导航路径提取方法[J].农业机械学报,2020,51(1):19-28.
[17]杨洋,张亚兰,苗伟,等.基于卷积神经网络的玉米根茎精确识别与定位研究[J]. 农业机械学报,2018,49(10):46-53.
[18]RAHMAN M T, KEHTARNAVAZ N, RAZLIGHI Q R. Using image entropy maximum for auto exposure[J].Journal of Electronic Imaging, 2011, 20(1):1917-1929.
[19]杨作廷,阮萍,翟波. 基于图像熵的高动态范围场景的自动曝光算法[J].光子学报,2013,42(6): 742-746.
[20]陈娇,姜国权,杜尚丰,等. 基于垄线平行特征的视觉导航多垄线识别[J]. 农业工程学报,2009,25(12):107-113.
[21]姜国权,柯杏,杜尚丰,等. 基于机器视觉的农田作物行检测[J]. 光学学报,2009,29(4): 1015-1020.
[22]姜国权,柯杏,杜尚丰,等. 基于机器视觉和随机方法的作物行提取算法[J].农业机械学报,2008,39(11): 85-88,93.
[23]KARABOGA D. An idea based on honey bee swarm for numerical optimization[R]. Turkey: Computer Engineering Department, Engineering Faculty, Erciyes University,2005.
[24]MEYER G E, NETO J C. Verification of color vegetation indices for automated crop imaging applications[J]. Computer and Electronics in Agriculture, 2008, 63(2): 282-293.

相似文献/References:

[1]许伟栋,赵忠盖.基于卷积神经网络和支持向量机算法的马铃薯表面缺陷检测[J].江苏农业学报,2018,(06):1378.[doi:doi:10.3969/j.issn.1000-4440.2018.06.025]
 XU Wei-dong,ZHAO Zhong-gai.Potato surface defects detection based on convolution neural networks and support vector machine algorithm[J].,2018,(04):1378.[doi:doi:10.3969/j.issn.1000-4440.2018.06.025]
[2]李颀,杨军.基于多分辨率特征融合的葡萄尺寸检测[J].江苏农业学报,2022,38(02):394.[doi:doi:10.3969/j.issn.1000-4440.2022.02.013]
 LI Qi,YANG Jun.Grape size detection based on multi-resolution feature fusion[J].,2022,38(04):394.[doi:doi:10.3969/j.issn.1000-4440.2022.02.013]
[3]翟先一,魏鸿磊,韩美奇,等.基于改进YOLO卷积神经网络的水下海参检测[J].江苏农业学报,2023,(07):1543.[doi:doi:10.3969/j.issn.1000-4440.2023.07.011]
 ZHAI Xian-yi,WEI Hong-lei,HAN Mei-qi,et al.Underwater sea cucumber identification based on improved YOLO convolutional neural network[J].,2023,(04):1543.[doi:doi:10.3969/j.issn.1000-4440.2023.07.011]

备注/Memo

备注/Memo:
收稿日期:2020-01-18基金项目:天津市教委科研计划项目(JWK1613)作者简介:孟庆宽(1983-),男,天津武清人,博士,讲师,主要从事精准农业和农业信息化技术方面的研究。(E-mail)373414672@qq.com
更新日期/Last Update: 2020-09-08