[1]苏行健,陈世辉,李晶晶,等.较低风速下构树叶的热交换效应[J].江苏农业学报,2020,(04):868-874.[doi:doi:10.3969/j.issn.1000-4440.2020.04.009]
 SU Xing-jian,CHEN Shi-hui,LI Jing-jing,et al.Heat exchange effect of Broussonetia papyrifera leaves under low wind speed conditions[J].,2020,(04):868-874.[doi:doi:10.3969/j.issn.1000-4440.2020.04.009]
点击复制

较低风速下构树叶的热交换效应()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年04期
页码:
868-874
栏目:
遗传育种·生理生化
出版日期:
2020-08-31

文章信息/Info

Title:
Heat exchange effect of Broussonetia papyrifera leaves under low wind speed conditions
作者:
苏行健陈世辉李晶晶杨静余雅卓万小霞尹增芳
(南京林业大学生物与环境学院,江苏南京210037)
Author(s):
SU Xing-jianCHEN Shi-huiLI Jing-jingYANG JingYU Ya-zhuoWAN Xiao-xiaYIN Zeng-fang
(College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China)
关键词:
叶形异形叶层流低风速对流换热
Keywords:
leaf shapeheteromorphic leaveslaminar flowlow wind speedconvective heat transfer
分类号:
S718
DOI:
doi:10.3969/j.issn.1000-4440.2020.04.009
文献标志码:
A
摘要:
植物叶片的对流换热能力对理解不同植物叶片的性状差异以及环境适应机制至关重要。植物的对流换热能力受多个因素影响,叶形是最明显且最重要的影响因素之一。叶形对叶片的对流换热能力的影响包括:叶形本身对热交换的影响以及不同叶形的叶片抖动对热交换产生的影响,二者高度耦合,难以分离。本研究以5年生构树的心形叶和开裂叶为试验材料,研究叶形、叶片表观结构和叶子抖动对散热的影响。结果表明,在本试验条件下,开裂叶比心形叶更有利于对流散热;叶片边缘部分对流散热能力强于中心部分;抖动状态下叶片的散热能力优于静止状态下叶片的散热能力;叶片背面的散热能力略强于叶片正面。
Abstract:
The convective heat transfer capacity of plant leaves is very important to understand the differences of leaf traits and environmental adaptation mechanism. The convective heat transfer capacity of plants is affected by many factors, and leaf shape is one of the most obvious and important factors. The leaf shape itself and the shaking will affect the convective heat transfer capacity. The two factors are highly coupled and difficult to separate. In this study, five-year-old Broussonetia papyrifera leaves (heart-shaped leaves and cracked leaves) were selected as the experimental materials, and the effects of leaf shape, leaf surface microstructure and leaf shaking on heat dissipation were explored. The results showed that under the experimental conditions, the cracked leaf was more conducive to heat dissipation than the heart-shaped leaf, and heat dissipation ability of leaf in edge part was stronger than that in the center part. In addition, the heat dissipation capacity of the leaf under shaking state was better than that under static state, and the heat dissipation capacity of the leaf in back side was slightly higher than that in the front side.

参考文献/References:

[1]SCHUEPP P H. Studies of forced-convection heat and mass transfer of fluttering realistic leaf models[J]. Boundary-Layer Meteorology, 1972, 2(3):263-274.
[2]LIN H, CHEN Y, ZHANG H, et al. Stronger cooling effects of transpiration and leaf physical traits of plants from a hot dry habitat than from a hot wet habitat[J]. Functional Ecology, 2017, 31:2202-2211.
[3]CHEN C. Development of a heat transfer model for plant tissue culture vessels[J]. Biosystems Engineering, 2003, 85 (1):67-77.
[4]SHIBUYA T, TSURUYAMA J, KITAYA Y, at al. Enhancement of photosynthesis and growth of tomato seedlings by forced ventilation within the canopy[J]. Scientia Horticulturae, 2006, 109 (3):218-222.
[5]VOGEL S . Leaves in the lowest and highest winds: temperature, force and shape[J]. New Phytologist, 2009, 183(1):13-26.
[6]LEIGH A, SEVANTO S, CLOSE J D, at al. The influence of leaf size and shape on leaf thermal dynamics: does theory hold up under natural conditions[J]. Plant Cell and Environment, 2017, 40(2):237-248.
[7]ANDRE M, CAROLINA B, DULCE M, et al. Does the same morphology mean the same physiology? Morphophysiological adjustments of Philodendron hederaceum (Jacq.) Schott, an isomorphic aroid, to ground-canopy transition[J]. Theoretical and Experimental Plant Physiology, 2018, 30:89-101.
[8]THIJS D, PIETER V, QUANG T H, et al. Convective heat and mass exchange predictions at leaf surfaces: applications, methods and perspectives[J]. Computers and Electronics in Agriculture, 2013, 96:180-201.
[9]BOULARD T, WANG S. Experimental and numerical studies on the heterogeneity of crop transpiration in a plastic tunnel[J]. Computers and Electronics in Agriculture, 2002, 34 (1/3):173-190.
[10]MAJDOUBI H, BOULARD T, FATNASSI H, et al. Airflow and microclimate patterns in a one-hectare Canary type greenhouse: an experimental and CFD assisted study[J]. Agricultural and Forest Meteorology, 2009, 149(6/7):1050-1062.
[11]MOLINA-AIZ F D, FATNASSI H, BOULARD T, et al. Comparison of finite element and finite volume methods for simulation of natural ventilation in greenhouses[J]. Computers and Electronics in Agriculture, 2010, 72(2):69-86.
[12]VERMEULEN K, AERTS J M, DEKOCK J, at al. Automated leaf temperature monitoring of glasshouse tomato plants by using a leaf energy balance model[J]. Computers and Electronics in Agriculture, 2012, 87:19-31.
[13]BARTZANAS T, KACIRA M, ZHU H, et al. Computational fluid dynamics applications to improve crop production systems[J]. Computers and Electronics in Agriculture, 2013, 93:151-167.
[14]GOTTSCHLICH D E, SMITH A P. Convective heat transfer characteristics of toothed leaves[J]. Oecologia, 1982, 53(3):418-420.
[15]PARLANGE J Y, WAGGONER P E, HEICHEL G H. Boundary layer resistance and temperature distribution on still and flapping leaves [J]. Plant Physiology, 1971, 48(4):437-442.
[16]MORRIS T, STEEN S. Experiments on the stability and drag of a flexible sheet under in-plane tension in uniform flow[J]. Journal of Fluids and Structures, 2009, 25(5):815-830.
[17]李鲁英,程涛. 简易风洞的高层结构风震动模拟实验[J]. 黄石理工学院学报, 2011, 27(1):32-36.
[18]JAYALAKSHMY M S, PHILIP J. Thermophysical properties of plant leaves and their influence on the environment temperature[J]. International Journal of Thermophysics, 2010, 31:2295-2304.
[19]PARK S N. Physicochemical and environmental plant physiology [M]. 4th ed. New York: Academic Press, 2009:333-335.
[20]BARRERA D L, WALTER E, HARTMUT S . Wind effects on leaf morphology for the mangrove Conocarpus erecta at an oceanic island from the Mexican Pacific Ocean[J]. Revista Chilena De Historia Natural, 2006, 79:451-463.
[21]MOLES, ANGELA T, GIBSON, et al. Using evolutionary ideas to improve understanding of global patterns in plant traits[J]. Journal of Ecology, 2018, 106:1-18.
[22]INCROPERA F P, DEWITT D P. Fundamentals of heat and mass transfer[M].6th ed. New Jersey:John Wiley & Sons Inc, 2007:257-259.
[23]詹士昌. 牛顿冷却定律适用范围的探讨[J]. 大学物理, 2000,19(5):36-37.
[24]刘志华,刘瑞金. 牛顿冷却定律的冷却规律研究[J]. 山东理工大学学报(自然科学版),2005,19(6):23-27.
[25]徐荣辉. 牛顿冷却定律在微分方程中的应用[J]. 晋城职业技术院学报,2010,3(5):87-89.
[26]PARKHURST D F, DUNCAN P R, GATES D M, et al. Wind-tunnel modelling of convection of heat between air and broad leaves of plants[J]. Agricultural Meteorology, 1968, 5(1):33-47.
[27]GRACE J, FASEHUN F E, DIXON M. Boundary layer conductance of the leaves of some tropical timber trees[J]. Plant, Cell & Environment, 2010, 3(6):443-450.
[28]DAVID F P. Optimal leaf size in relation to environment[J]. Journal of Ecology, 1972, 60(2):505-537.
[29]KNOERR K R, GAY L W. Tree leaf energy balance[J]. Ecology, 1965, 46(1):17-24.
[30]SINCLAIR R. Convective heat transfer from narrow leaves[J]. Australian Journal of Biological Sciences, 2020, 23(2):309-322.
[31]KUMAR A, BARTHAKUR N. Convective heat transfer measurements of plants in a wind tunnel[J]. Boundary-Layer Meteorology, 1971, 2(2):218-227.
[32]KITANO M, EGUCHI H. Air humidity within boundary layer of a transpiring leaf-I. Relationship between transpiration and water vapor density at leaf surface[J]. Biotronics, 1987, 16:39-45.
[33]KITANO M, EGUCHI H. Air humidity within boundary layer of a transpiring leaf-II. Profile of water vapor density within the boundary layer[J]. Biotronics, 1987, 16:47-55.
[34]MARTIN T A, HINCKLEY T M, MEINZER F C, et al. Boundary layer conductance, leaf temperature and transpiration of Abies amabilis branches[J]. Tree Physiology, 1999, 19(7):435-443.
[35]ROY J C, VIDAL C, FARGUES J, et al. CFD based determination of temperature and humidity at leaf surface[J]. Computers and Electronics in Agriculture, 2008, 61(2):201-212.
[36]YATES M J, VERBOOM G A, REBELO A G, et al. Ecophysiological significance of leaf sizevariation in Proteaceae from the Cape Floristic Region[J]. Functional Ecology, 2010, 24:485-492.
[37]HUMBERTO R D R, MICHAEL L G, SCOTT D M, et al. Seasonality of water and heat fluxes over a tropical forest in eastern Amazonia[J]. Ecological Applications, 2004,14(4):S22-S32.

备注/Memo

备注/Memo:
收稿日期:2020-06-07基金项目:2018江苏省大学生创新创业训练计划项目(201810298053Z)作者简介:苏行健(1999-),男,江苏连云港人,本科,主要从事玉兰科植物发育方面的研究。(E-mail)1252256021@qq.com。陈世辉为共同第一作者。通讯作者:尹增芳,(E-mail)zfyin@njfu.edu.cn
更新日期/Last Update: 2020-09-08