[1]王欢,李平华,牛清,等.日粮纤维水平对不同猪种肠道物理屏障和微生物的影响[J].江苏农业学报,2020,(03):639-647.[doi:doi:10.3969/j.issn.1000-4440.2020.03.016]
 WANG Huan,LI Ping-hua,NIU Qing,et al.Effects of dietary fiber levels on intestinal physical barrier and microbiota in different pig breeds[J].,2020,(03):639-647.[doi:doi:10.3969/j.issn.1000-4440.2020.03.016]
点击复制

日粮纤维水平对不同猪种肠道物理屏障和微生物的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年03期
页码:
639-647
栏目:
畜牧兽医·水产养殖
出版日期:
2020-06-30

文章信息/Info

Title:
Effects of dietary fiber levels on intestinal physical barrier and microbiota in different pig breeds
作者:
王欢12李平华123牛清12杜陶然12蒲广12范丽娟12牛培培2吴承武12周五朵13黄瑞华123
(1.南京农业大学养猪研究所,江苏南京210095;2.南京农业大学淮安研究院,江苏淮安223001;3.江苏现代农业(生猪)产业技术体系集成创新中心,江苏南京210095)
Author(s):
WANG Huan12LI Ping-hua123NIU Qing12DU Tao-ran12PU Guang12FAN Li-juan12NIU Pei-pei2WU Cheng-wu12ZHOU Wu-duo13HUANG Rui-hua123
(1.Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China;2.Huai′an Academy, Nanjing Agricultural University, Huai′an 223001, China;3.Integration Innovation Center of Jiangsu Modern Agricultural (Pig′s) Industrial Technology System, Nanjing 210095, China)
关键词:
二花脸猪大白猪日粮纤维麸皮肠道通透性肠道形态肠道微生物
Keywords:
Erhualian pigLarge White pigdietary fiberwheat branintestinal permeabilityintestinal morphologyintestinal microbiota
分类号:
S828.8
DOI:
doi:10.3969/j.issn.1000-4440.2020.03.016
文献标志码:
A
摘要:
为研究日粮纤维水平对不同品种猪肠道形态、通透性和微生物的影响,按照2×4双因子设计,选择体质量约40 kg的健康二花脸猪和与二花脸猪相同生理阶段约65 kg的大白猪各24头随机分为4个处理组,分别饲喂基础日粮和7%、14%、21%麸皮替代基础日粮,每组6个重复,使用奥饲本全自动生产性能测定系统进行饲喂,每个重复1头猪。正试期28 d,试验结束时采集血液样品,分离血清用于血清内毒素、二胺氧化酶(DAO)和D-乳酸含量测定;屠宰采集盲肠和结肠中段样品进行形态学观察,采集空肠和结肠黏膜进行微生物16S rRNA基因拷贝数测定。结果表明:猪品种对血清内毒素含量、D-乳酸含量、空肠双歧杆菌丰度、盲肠隐窝深度、盲肠肠壁厚度、结肠肠壁厚度、结肠肌层厚度、结肠大肠杆菌和结肠乳酸杆菌丰度有显著影响(P<0.05)。日粮麸皮水平对血清DAO含量、D-乳酸含量和结肠大肠杆菌丰度有显著影响(P<0.05)。二花脸猪,与基础日粮对照相比,7%和14%麸皮替代日粮处理的D-乳酸含量显著升高(P<0.05),21%麸皮替代日粮处理的DAO含量显著升高(P<0.05),7%麸皮替代日粮处理的盲肠肌层厚度显著升高(P<0.05),21%麸皮替代日粮处理的盲肠肠壁厚度显著降低(P<0.05),7%麸皮替代日粮处理的结肠乳酸杆菌丰度显著升高(P<0.05),14%麸皮替代日粮处理的结肠大肠杆菌丰度显著降低(P<0.05)。大白猪,与基础日粮对照相比,14%麸皮替代日粮处理的DAO含量显著升高(P<0.05),14%和21%麸皮替代日粮处理的盲肠肠壁厚度显著增加(P<0.05),7%麸皮替代日粮处理的空肠双歧杆菌丰度显著降低(P<0.05),14%麸皮替代日粮处理的空肠双歧杆菌和结肠乳酸杆菌丰度显著降低(P<0.05)。综上所述,大白猪和二花脸猪在大肠形态、肠道通透性、空肠双歧杆菌丰度、结肠大肠杆菌丰度和结肠乳酸杆菌丰度等方面存在差异,日粮麸皮水平影响结肠大肠杆菌丰度。7%麸皮替代水平增大二花脸猪肠道通透性,但增加盲肠肌层厚度以适应纤维的消化,并增加结肠乳酸杆菌丰度促进肠道健康。14%麸皮替代水平会导致大白猪肠道通透性增大,盲肠肠壁增厚,空肠双歧杆菌和结肠乳酸杆菌丰度降低。
Abstract:
The aim of this experiment was to study the effects of dietary fiber levels on intestinal morphology, permeability and microbiota in different pig breeds. Based on 2×4 two-factor design, twenty-four Erhualian pigs (approximately 40 kg) and twenty-four Large White pigs (the same physiological stage as the Erhualian pig, approximately 65 kg) were selected and randomly divided into four treatment groups including control diet group, 7%, 14% and 21% wheat bran replaced basal diet with six replicates in each group and one pig per replicate. The pigs were fed by the Osborne testing stations system. After the 28-d trial, blood samples were collected and the serum was collected for analyses of endotoxin, diamine oxidase (DAO) and D-lactate. The middle sections of the cecum and colon were collected for histological analysis. Mucosal scrapings from the jejunum and colon were prepared for the detemination of 16S rRNA gene copy number. The results showed that pig breeds had significant effects on serum endotoxin content, D-lactate content, the abundance of Bifidobacterium in the jejunum, cecal crypt depth, intestinal wall thickness in the cecum, intestinal wall thickness in the colon, muscle thickness in the colon, the abundance of Escherichia coli and Lactobacillus in the colon (P<0.05). The level of wheat bran had significant effects on serum DAO content, D-lactate content and the abundance of Escherichia coli in the colon (P<0.05). For Erhualian pig, compared with the control group, 7% and 14% wheat bran significantly increased D-lactate content (P<0.05), 21% wheat bran significantly increased DAO content (P<0.05), 7% wheat bran significantly increased the muscle thickness in the cecum(P<0.05), 21% wheat bran significantly decreased intestinal wall thickness in the cecum (P<0.05), 7% wheat bran significantly increased the abundance of Lactobacillus, 14% wheat bran decreased the abundance of Escherichia coli in the colon (P<0.05). For Large White pig, compared with control group, 14% wheat bran significantly increased DAO content (P<0.05), 14% and 21% wheat bran significantly increased the intestinal wall thickness in the cecum (P<0.05), 7% wheat bran significantly decreased the abundance of Bifidobacterium in the jejunum (P<0.05), 14% wheat bran significantly decreased the abundance of Bifidobacterium in the jejunum and the abundance of Lactobacillus in the colon (P<0.05). In conclusion, there were differences between Erhualian pig and Large White pig in large intestine morphology, intestinal permeability, the abundance of Bifidobacterium in the jejunum, the abundance of Escherichia coli in the color, the abundance of Lactobacillus in the colon. The level of wheat bran affected the abundance of Escherichia coli in the colon. The 7% wheat bran increased intestinal permeability in Erhualian pigs. However, muscle thickness in the cecum was increased to odapt to the digestion of fiber, and the abundance of Lactobacillus in the colon was increased to improve intestinal health. The 14% wheat bran increased intestinal permeability and intestinal wall thickness in the cecum, and decreased the abundance of Bifidobacterium in the jejunum and Lactobacillus in the colon.

参考文献/References:

[1]JHA R, BERROCOSO J D. Review: Dietary fiber utilization and its effects on physiological functions and gut health of swine [J]. Animal, 2015, 9(9): 1441-1452.
[2]MAKKAR H. Review: Feed demand landscape and implications of food-not feed strategy for food security and climate change [J]. Animal, 2017, 12: 1-11.
[3]ZHAO J, ZHANG S, XIE F, et al. Effects of inclusion level and adaptation period on nutrient digestibility and digestible energy of wheat bran in growing-finishing pigs [J]. Asian-Australas J Anim Sci, 2018, 31(1): 116-122.
[4]NOBLET J, GOFF G I. Effect of dietary fibre on the energy value of feeds for pigs [J]. Animal Feed Science and Technology, 2001, 90: 35-52.
[5]HOLSCHER H. Dietary fiber and prebiotics and the gastrointestinal microbiota [J]. Gut Microbes, 2017, 8: 172-184.
[6]GRIZARD D, BARTHOMEUF C. Non-digestible oligosaccharides used as prebiotic agents: Mode of production and beneficial effects on animal and human health [J]. Reproduction, Nutrition, Development, 1999, 39: 563-588.
[7]WEGH C, SCHOTERMAN M, VAUGHAN E, et al. The effect of fiber and prebiotics on children’s gastrointestinal disorders and microbiome [J]. Expert Review of Gastroenterology & Hepatology, 2017, 11: 97-105.
[8]URRIOLA P, STEIN H. Comparative digestibility of energy and nutrients in fibrous feed ingredients fed to Meishan and Yorkshire pigs [J]. Journal of Animal Science, 2012, 90: 802-812.
[9]KEMP B, HARTOG L A, KLOK J, et al. The digestibility of nutrients, energy and nitrogen in the Meishan and Dutch Landrace pig [J]. Journal of Animal Physiology and Animal Nutrition, 1991, 65: 263-266.
[10]KANENGONI A T, DZAMA K, CHIMONYO M, et al. Influence of level of maize cob meal on nutrient digestibility and nitrogen balance in Large White, Mukota and LW × M F 1 crossbred pigs [J]. Animal Science, 2016, 74(1): 127-134.
[11]STERN S, SOLANES F X. Estimated mature weights and growth curves for large white sows [J]. Acta Agriculturae Scandinavica Section A, Animal Science, 2001, 51(2): 142-147.
[12]FIERER N, JACKSON J A, VILGALYS R, et al. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays [J]. Appl Environ Microbiol, 2005, 71(7): 4117-4120.
[13]CASTILLO M, MARTIN-ORUE S M, MANZANILLA E G, et al. Quantification of total bacteria, enterobacteria and lactobacilli populations in pig digesta by real-time PCR [J]. Vet Microbiol, 2006, 114(1/2): 165-170.
[14]FURET J P, FIRMESSE O, GOURMELON M, et al. Comparative assessment of human and farm animal faecal microbiota using real-time quantitative PCR [J]. FEMS Microbiol Ecol, 2009, 68(3): 351-362.
[15]LAKSHMI C, GHIM J, RYU S. Mechanisms regulating intestinal barrier integrity and its pathological implications [J]. Experimental & Molecular Medicine, 2018, 50: 103.
[16]刘伟,王晓红,杨晓军,等. 脓毒症患者肠屏障功能损伤及其相关因素 [J]. 中华医学杂志, 2016, 96( 44 ): 3568-3572.
[17]TAKIISHI T, MORALES C, CMARA N. Intestinal barrier and gut microbiota: Shaping our immune responses throughout life [J]. Tissue Barriers, 2017, 5(4): e1373208.
[18]SMITH F, CLARK J E, OVERMAN B L, et al. Early weaning stress impairs development of mucosal barrier function in the porcine intestine [J]. Am J Physiol Gastrointest Liver Physiol, 2010, 298(3): 352-363.
[19]MANZOTTI G, BREDA D, DI GIOACCHINO M, et al. Serum diamine oxidase activity in patients with histamine intolerance [J]. Int J Immunopathol Pharmacol, 2016, 29(1): 105-111.
[20]FUKUDOME I, KOBAYASHI M, DABANAKA K, et al. Diamine oxidase as a marker of intestinal mucosal injury and the effect of soluble dietary fiber on gastrointestinal tract toxicity after intravenous 5-fluorouracil treatment in rats [J]. Med Mol Morphol, 2014, 47(2): 100-107.
[21]NGCC T, TRAN H, LEN N, et al. Effect of fibre level and fibre source on gut morphology and micro-environment in local (Mong Cai) and exotic (Landrace×Yorkshire) pigs [J]. Asian-Australasian Journal of Animal Sciences, 2012, 25: 1726-1733.
[22]FREIRE J, DIAS R, CUNHA L, et al. The effect of genotype and dietary fibre level on the caecal bacterial enzyme activity of young piglets: Digestive consequences [J]. Animal Feed Science and Technology, 2003, 106: 119-130.
[23]JIN L, REYNOLDS L P, REDMER D A, et al. Effects of dietary fiber on intestinal growth, cell proliferation, and morphology in growing pigs [J]. J Anim Sci, 1994, 72(9): 2270-2278.
[24]THOMSEN L E, KNUDSEN K E, HEDEMANN M S, et al. The effect of dietary carbohydrates and Trichuris suis infection on pig large intestine tissue structure, epithelial cell proliferation and mucin characteristics [J]. Vet Parasitol, 2006, 142(1/2): 112-122.
[25]PETKEVICIUS S, BACH KNUDSEN K E, MURRELL K D. Effects of Oesophagostomum dentatum and dietary carbohydrates on morphology of the large intestine of pigs [J]. Vet Parasitol, 2003, 116(2): 125-138.
[26]向明,李媛媛,郭乾鹏,等. 屎肠球菌对哺乳期仔猪结肠微生物群落优势门属的影响[J].南方农业学报,2019,50(3):477-484.
[27]张铮,石青松,朱伟云,等. 乳酸菌发酵饲料对断奶仔猪生长性能和肠道健康的影响[J]. 江苏农业科学,2018,46(19):170-173.
[28]冯士彬,程连平,舒迎霜,等. 黄芪多糖对湖羊羔羊生长性能、血清指标、消化功能和直肠菌群的影响[J].江苏农业学报, 2019, 35(1):122-129.
[29]方雷,陈根元,刘利林,等. 新疆驴盲肠、腹结肠、背结肠固相食糜细菌多样性研究[J]. 江苏农业科学,2019,47(8):176-178.
[30]康润敏,李瑶,吕学斌,等. 利用16S rDNA扩增子测序技术分析不同品种猪盲肠微生物菌落多样性 [J]. 中国畜牧兽医, 2017, 44:3121-3129.
[31]YU C, ZHANG S, YANG Q, et al. Effect of high fibre diets formulated with different fibrous ingredients on performance, nutrient digestibility and faecal microbiota of weaned piglets [J]. Arch Anim Nutr, 2016, 70(4): 263-277.
[32]CHEN H, CHEN D, QIN W, et al. Wheat bran components modulate intestinal bacteria and gene expression of barrier function relevant proteins in a piglet model [J]. Int J Food Sci Nutr, 2017, 68(1): 65-72.
[33]KUMAR A, HENDERSON A, FORSTER G M, et al. Dietary rice bran promotes resistance to Salmonella enterica serovar Typhimurium colonization in mice [J]. BMC Microbiol, 2012, 12: 71.
[34]HERFEL T, JACOBI S, LIN X, et al. Stabilized rice bran improves weaning pig performance via a prebiotic mechanism [J]. J Anim Sci, 2013, 91(2): 907-913.

相似文献/References:

[1]徐小波,冯宇,陆志强,等.二花脸猪产仔数性状的分子标记及其效应分析[J].江苏农业学报,2015,(03):579.[doi:10.3969/j.issn.1000-4440.2015.03.018]
 XU Xiao-bo,FENG Yu,LU Zhi-qiang,et al.Molecular markers of litter size and its effect in Erhualian sows[J].,2015,(03):579.[doi:10.3969/j.issn.1000-4440.2015.03.018]

备注/Memo

备注/Memo:
收稿日期:2019-09-28基金项目:国家自然科学基金项目(31872318);国家科技支撑计划项目(2015BAD03B02-4);江苏省农业三新工程项目[SXGC(2017)275];淮安市科技计划项目(HAN201617)作者简介:王欢(1992- ),男,山东枣庄人,硕士研究生,研究方向为猪肠道健康与耐粗饲料机制。(E-mail)2017105010@njau.edu.cn通讯作者:黄瑞华,(E-mail)rhhuang@njau.edu.cn
更新日期/Last Update: 2020-07-14