[1]徐海,宋波,顾宗福,等.植物耐热机理研究进展[J].江苏农业学报,2020,(01):243-250.[doi:doi:10.3969/j.issn.1000-4440.2020.01.034]
 XU Hai,SONG Bo,GU Zong-fu,et al.Advances in heat tolerance mechanisms of plants[J].,2020,(01):243-250.[doi:doi:10.3969/j.issn.1000-4440.2020.01.034]
点击复制

植物耐热机理研究进展()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年01期
页码:
243-250
栏目:
综述
出版日期:
2020-02-29

文章信息/Info

Title:
Advances in heat tolerance mechanisms of plants
作者:
徐海1宋波1顾宗福2毕研飞2魏斌2
(1.江苏省农业科学院蔬菜研究所/江苏省高效园艺作物遗传改良重点实验室,江苏南京210014;2.江苏常熟国家农业科技园区管理委员会,江苏常熟215557)
Author(s):
XU Hai1SONG Bo1GU Zong-fu2BI Yan-fei2WEI Bin2
(1.Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China;2.Jiangsu Changshu National Agricultural Science and Technology Park Management Committee, Changshu 215557, China)
关键词:
植物耐热性活性氧热激蛋白
Keywords:
plantheat tolerancereactive oxygen speciesheat shock proteins
分类号:
S184;Q945
DOI:
doi:10.3969/j.issn.1000-4440.2020.01.034
文献标志码:
A
摘要:
气候因素导致的热胁迫严重影响农作物的产量和质量,引起了广泛关注。植物通过积累不同的代谢产物,并激活一系列信号途径来应对热胁迫,这些变化凸显了植物热胁迫响应生理和分子机制的复杂性。本文详细综述了生物膜、活性氧解毒机制、热激蛋白和各类保护剂在植物耐热性形成中的作用,并对未来如何深入研究植物热胁迫响应及耐热性机制机理提出展望,以期为植物耐热性育种提供指导。
Abstract:
Heat stress caused by climate factors seriously affects crop yield and quality, which has attracted wide attention. In response to heat stress, different metabolites were accumulated in plants and a series of signaling pathways were activated. These changes highlighted the complexity of physiological and molecular mechanisms of plant response to heat stress. In this paper, the role of biomembrane, active oxygen detoxification mechanism, heat shock protein and various protectants in the formation of plant heat tolerance was reviewed in detail, and the further study for the response of plant heat stress and the mechanism of heat tolerance was prospected in order to provide guidance for plant heat tolerance breeding.

参考文献/References:

[1]EITZINGER J, ORLANDINI S, STEFANSKI R, et al. Climate change and agriculture: introductory editorial[J]. The Journal of Agricultural Science, 2010, 148(5): 499-500.
[2]BOKSZCZANIN K L, FRAGKOSTEFANAKIS S, BOSTAN H, et al. Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance[J]. Frontiers in Plant Science, 2013, 4: 315.
[3]BOHNERT H J, GONG Q Q, LI P H, et al. Unraveling abiotic stress tolerance mechanisms-getting genomics going [J]. Current Opinion in Plant Biology, 2006, 9(2): 180-188.
[4]WANG W, VINOCUR B, SHOSEYOV O, et al. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response [J]. Trends in Plant Science, 2004, 9(5): 244-252.
[5]HEMANTARANJAN A, NISHANT BHANU A, SINGH M N, et al. Heat stress responses and thermotolerance [J]. Advances in Plants & Agriculture Research, 2014, 1(3): 1-10.
[6]LARKINDALE J, KNIGHT M R. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene and salicylic acid [J]. Plant Physiology, 2002, 128(2): 682-695.
[7]SUZUKI N, MITTLER R. Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction [J]. Plant Physiology, 2006, 126(1): 45-51.
[8]CHAKRABORTY U, PRADHAN D. High temperature-induced oxidative stress in Lens culinaris, role of antioxidants and amelioration of stress by chemical pre-treatments [J]. Journal of Plant Interaction, 2011, 6(1): 43-52.
[9]XU S, LI J, ZHANG X, et al. Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress[J]. Environmental and Experimental Botany, 2006, 56(3): 274-285.
[10]HAMEED A, GOHER M, IQBAL N. Heat stress-induced cell death, changes in antioxidants, lipid peroxidation, and protease activity in wheat leaves[J]. Journal of Plant Growth Regulation, 2012, 31(3): 283-291.
[11]SENTHIL-KUMAR M, KUMAR G, SRIKANTHBABU V, et al. Assessment of variability in acquired thermotolerance: potential option to study genotypic response and the relevance of stress genes[J]. Journal of Plant Physiology, 2007, 164(2): 111-125.
[12] MAESTRI E, KLUEVA N, PERROTTA C, et al. Molecular genetics of heat tolerance and heat shock proteins in cereals[J]. Plant Molecular Biology, 2002, 48(5/6): 667-681.
[13]GARG N, MANCHANDA G. ROS generation in plants: boon or bane? [J]. Plant Biosystem, 2009, 143(1): 81-96.
[14]WAGNER D, PRZYBYLA D, OP DEN CAMP R, et al. The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana[J]. Science, 2004, 306(5699): 1183-1185.
[15]MONTILLET J L, CHAMNONGPOL S, RUSTERUCCI C, et al. Fatty acid hydroperoxides and H2O2 in the execution of hypersensitive cell death in tobacco leaves [J]. Plant Physiology, 2005, 138(3): 1516-1526.
[16]PASTORE A, MARTIN S R, POLITOU A, et al. Unbiased cold denaturation: low- and high-temperature unfolding of yeast frataxin under physiological conditions [J]. Journal of the American Chemical Society, 2007, 129(17): 5374-5375.
[17]YAMADA K, FUKAO Y, HAYASHI M, et al. Cytosolic HSP90 regulated the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana [J]. Journal of Biological Chemistry, 2007, 282(52): 37794-37804.
[18]VON KOSKULL-DORING P, SCHARF K D, NOVER L. The diversity of plant heat stress transcription factors [J]. Trends in Plant Science, 2007, 12(10): 452-457.
[19]GUPTA N K, AGARWAL S, AGARWAL V P, et al. Effect of short-term heat stress on growth, physiology and antioxidative defence system in wheat seedlings[J]. Acta Physiologiae Plantarum, 2013, 35(6): 1837-1842.
[20] SAIRAM R K, DESHMUKH P S, SAXENA D C. Role of antioxidant systems in wheat genotypes tolerance to water stress[J]. Biologia Plantarum, 1998, 41(3): 387-394.
[21] SAIRAM R K, SRIVASTAVA G C, SAXENA D C. Increased antioxidant activity under elevated temperatures: a mechanism of heat stress tolerance in wheat genotypes[J]. Biologia Plantarum, 2000, 43(2): 245-251.
[22] MITTLER R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in Plant Science, 2002, 7(9): 405-410.
[23] ALMESELMANI M, DESHMUKH P S, SAIRAM R K, et al. Protective role of antioxidant enzymes under high temperature stress[J]. Plant Science, 2006, 171(3): 382-388.
[24] VAN BREUSEGEM F, VRANOV E, DAT J F, et al. The role of active oxygen species in plant signal transduction[J]. Plant Science, 2001, 161(3): 405-414.
[25]ESFANDIARI E, SHEKARI F, ESFANDIAR M. The effect of salt stress on antioxidant enzymes activity and lipid peroxidation on the wheat seedlings [J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2007, 35(1): 48-56.
[26]WAHID A, GELANI S, ASHRAF M, et al. Heat tolerance in plants: an overview[J]. Environmental and Experimental Botany, 2007, 61(3): 199-223.
[27] NOCTOR G, FOYER C H. Ascorbate and glutathione: keeping active oxygen under control[J]. Annual Review of Plant Biology, 1998, 49(1): 249-279.
[28] TRIPATHY B C, OELMLLER R. Reactive oxygen species generation and signaling in plants[J]. Plant Signaling & Behavior, 2012, 7(12): 1621-1633.
[29]DIXON D P, COLE D J, EDWARD R. Cloning and characterization of plant theta and zeta class GSTs: implication for plant GST classification [J]. Chemico-biological Interactions, 2001, 133: 33-36.
[30]DIXON D P, CUMMINIS I, COLE D J, et al. Glutathione mediated detoxification system in plants [J]. Current Opinion in Plant Biology, 1998, 1(3): 258-266.
[31] ROXAS V P, LODHI S A, GARRETT D K, et al. Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase[J]. Plant and Cell Physiology, 2000, 41(11): 1229-1234.
[32]KAUSHAL N, GUPTA K, BHANDHARI K, et al. Proline induces heat tolerance in chickpea (Cicer arietinum L.) plants by protecting vital enzymes of carbon and antioxidative metabolism [J]. Physiology and Molecular Biology of Plants, 2011, 17(3): 203-213.
[33]GOYAL M, ASTHIR B. Polyamine catabolism influences antioxidative defense mechanism in shoots and roots of five wheat genotypes under high temperature stress[J]. Plant Growth Regulation, 2010, 60(1): 13-25.
[34]SANDORF I, HOLLANDER-CZYTKO H. Jasmonate is involved in the induction of tyrosine aminotransferase and tocopherol biosynthesis in Arabidopsis thaliana [J]. Planta, 2002, 216(1): 173-179.
[35]KANWISCHER M, PORFIROVA S, BERGMULLER E, et al. Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress [J]. Plant Physiology, 2005, 137(2): 713-723.
[36]MUNN-BOSCH S. The role of α-tocopherol in plant stress tolerance[J]. Journal of Plant Physiology, 2005, 162(7): 743-748.
[37]SUZUKI N, KOUSSEVITZKY S, MITTLER R, et al. ROS and redox signalling in the response of plants to abiotic stress [J]. Plant, Cell and Environment, 2012, 35(2): 259-270.
[38]MORIMOTO R I. Cells in stress: transcriptional activation of heat shock genes [J]. Science, 1993, 259(5100): 1409-1410.
[39]GUPTA S C, SHARMA A, MISHRA M, et al. Heat shock proteins in toxicology: how close and how far?[J]. Life Sciences, 2010, 86(11/12): 377-384.
[40]BIAMONTI G, CACERES J F. Cellular stress and RNA splicing [J]. Trends in Biochemical Sciences, 2009, 34(3):146-153.
[41] SUN W, VAN MONTAGU M, VERBRUGGEN N. Small heat shock proteins and stress tolerance in plants[J]. Biochimica et Biophysica Acta, 2002, 1577(1): 1-9.
[42]SCHUETZ T J, GALLO G J, SHELDON L, et al. Isolation of a cDNA for HSF2: evidence for two heat shock factor genes in humans [J]. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88: 6911-6915.
[43]BANIWAL S K, BHARTI K, CHAN K Y, et al. Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors [J]. Journal of Biosciences, 2004,29(4): 471-487.
[44]HU W, HU G, HAN B. Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice[J]. Plant Science, 2009, 176(4): 583-590.
[45]QU A L, DING Y F, JIANG Q, et al. Molecular mechanisms of the plant heat stress response[J]. Biochemical and Biophysical Research Communications, 2013, 432(2): 203-207.
[46] CZARNECKA-VERNER E, YUAN C X, SCHARF K D, et al. Plants contain a novel multi-member class of heat shock factors without transcriptional activator potential[J]. Plant Molecular Biology, 2000, 43(4): 459-471.
[47]LEVITT M, GERSTEIN M, HUANG E, et al. Protein folding: the endgame[J]. Annual Review of Biochemistry, 1997, 66(1): 549-579.
[48]FEDER M E, HOFMANN G E. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology[J]. Annual Review of Physiology, 1999, 61(1): 243-282.
[49] SCHULZE-LEFERT P. Plant immunity: the origami of receptor activation[J]. Current Biology, 2004, 14(1): 22-24.
[50]PANARETOU B, ZHAI C. The heat shock proteins: their roles as multi-component machines for protein folding[J]. Fungal Biology Reviews, 2008, 22(3/4): 110-119.
[51]TIMPERIO A M, EGID M G, ZOLLA L. Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP) [J]. Journal of Proteomics, 2008, 71: 391-411.
[52]TRIPP J, MISHRA S K, SCHARF K D. Functional dissection of the cytosolic chaperone network in tomato mesophyll protoplasts[J]. Plant, Cell & Environment, 2009, 32(2): 123-133.
[53]LIU H C, LIAO H Y, CHARNG Y Y. The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis [J]. Plant, Cell & Environment, 2011, 34(5): 738-751.
[54]SUMESH K V, SHARMA-NATU P, GHILDIYAL M C. Starch synthase activity and heat shock protein in relation to thermal tolerance of developing wheat grains [J]. Biologia Plantarum, 2008, 52(4): 749-753.
[55]SULEMAN P, REDHA A, AFZAL M, et al. Temperature-induced changes of malondialdehyde, heat-shock proteins in relation to chlorophyll fluorescence and photosynthesis in Conocarpus lancifolius (Engl.) [J]. Acta Physiologiae Plantarum, 2013, 35(4): 1223-1231.
[56]DEROCHER A E, VIERLING E. Developmental control of small heat shock protein expression during pea seed maturation [J]. Plant Journal, 1994, 5(1): 93-102.
[57]AGARWAL M, SARKAR N, GROVER A. Low molecular weight heat shock proteins in plants [J]. Journal of Plant Biology, 2003, 30: 141-149.
[58]VIERLING E. The roles of heat shock proteins in plants[J]. Annual Review of Plant Biology, 1991, 42(1): 579-620.
[59]MORROW G, TANGUAY R M. Small heat shock protein expression and functions during development [J]. The International Journal of Biochemistry & Cell Biology, 2012, 44(10): 1613-1621.
[60]SHARMA-NATU P, SUMESH K V, GHILDIYAL M C. Heat shock protein in developing grains in relation to thermotolerance for grain growth in wheat [J]. Journal of Agronomy and Crop Science, 2010, 196: 76-80.
[61]HECKATHORN S A, DOWNS C A, SHARKEY T D, et al. The small, methionine-rich chloroplast heat-shock protein protects photosystem II electron transport during heat stress[J]. Plant Physiology, 1998, 116: 439-444.
[62]PREISS J, SIVAK M N. Starch synthesis in sinks and sources [M]. New York: Marcel Dekker Inc, 1996:63-96.
[63]HASANUZZAMAN M, HOSSAIN M A, FUJITA M. Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings [J]. Plant Biotechnology Reports, 2011, 5(4): 353-365.
[64]SAKAMOTO A, MURATA N. The role of glycine betaine in the protection of plants from stress: clues from transgenic plants [J]. Plant Cell and Environment, 2002, 25(2): 163-171.
[65]RASHEED R, WAHID A, FAROOQ M, et al. Role of proline and glycine betaine pretreatments in improving heat tolerance of sprouting sugarcane (Saccharum sp.) buds [J]. Plant Growth Regulation, 2011, 65(1): 35-45.
[66]宰学明,夏连全,闫道良,等. 外源Ca2+对高温强光胁迫下滨梅幼苗的保护效应[J]. 西北植物学报, 2011, 31(3): 558-563.
[67]GONG M, LI Y J, CHEN S Z. Abscisic acid-induced thermotolerance in maize seedlings is mediated by calcium and associated with antioxidant systems[J]. Journal of Plant Physiology, 1998, 153(3/4): 488-496.
[68]LARKINDALE J, KNIGHT M R. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid[J]. Plant Physiology, 2002, 128(2): 682-695.
[69]RODRIGUEZ M, CANALES E, BORRAS-HIDALGO O. Molecular aspects of abiotic stress in plants [J]. Biotecnologia Aplicada, 2005, 22(1): 1-10.
[70]VINOCUR B, ALTMAN A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations [J]. Current Opinion in Biotechnology, 2005, 16(2): 123-132.
[71]VON KOSKULL-DRING P, SCHARF K D, NOVER L. The diversity of plant heat stress transcription factors[J]. Trends in Plant Science, 2007, 12(10): 452-457.
[72]MILLER G, SUZUKI N, RIZHSKY L, et al. Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses[J]. Plant Physiology, 2007, 144: 1777-1785.
[73]MILLER G, SHULAEV V, MITTLER R. Reactive oxygen signaling and abiotic stress [J]. Physiologia Plantarum, 2008, 133: 481-489.
[74]YOSHIDA T, SAKUMA Y, TODAKA D, et al. Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2A stress-regulatory system [J]. Biochemical and Biophysical Research Communications, 2008, 368: 515-521.
[75]CHEN H, HWANG J E, LIM C J, et al. Arabidopsis DREB2C functions as a transcriptional activator of HsfA3 during the heat stress response[J]. Biochemical and Biophysical Research Communications, 2010, 401(2): 238-244.
[76]李绪友,郑进,李万德.与植物抗逆性有关的转录因子研究概况[J].中国西部科技, 2006(36): 62.

相似文献/References:

[1]佚名 佚名 佚名.三才期刊采编系统文章正在整理中…[J].江苏农业学报,2005,(01):53.
 ZHANG Hui,ZHANG Xiao jing.三才期刊采编系统文章正在整理中…[J].,2005,(01):53.
[2]佚名 佚名 佚名.三才期刊采编系统文章正在整理中…[J].江苏农业学报,2006,(01):53.
 ZHANG Hui,ZHANG Xiao jing.三才期刊采编系统文章正在整理中…[J].,2006,(01):53.
[3]许仙菊,张永春.植物耐低磷胁迫的根系适应性机制研究进展[J].江苏农业学报,2018,(06):1425.[doi:doi:10.3969/j.issn.1000-4440.2018.06.031]
 XU Xian-ju,ZHANG Yong-chun.Research progress on the root adaptation mechanism of plants under low phosphorus stress[J].,2018,(01):1425.[doi:doi:10.3969/j.issn.1000-4440.2018.06.031]
[4]郭广君,王述彬,刘金兵,等.植物抗黄瓜花叶病毒基因研究进展[J].江苏农业学报,2018,(06):1430.[doi:doi:10.3969/j.issn.1000-4440.2018.06.032]
 GUO Guang-jun,WANG Shu-bin,LIU Jin-bing,et al.Advances in related resistance genes of plant to cucumber mosaic virus[J].,2018,(01):1430.[doi:doi:10.3969/j.issn.1000-4440.2018.06.032]
[5]武坤,孔潇,董郁,等.人工湿地植物对污水中重金属铬、镉、铅富集能力的整合分析[J].江苏农业学报,2022,38(06):1532.[doi:doi:10.3969/j.issn.1000-4440.2022.06.011]
 WU Kun,KONG Xiao,DONG Yu,et al.Meta-analysis of the accumulation ability of wetland plants to chromium, cadmium and lead in wastewater[J].,2022,38(01):1532.[doi:doi:10.3969/j.issn.1000-4440.2022.06.011]

备注/Memo

备注/Memo:
收稿日期:2019-05-15基金项目:国家重点研发计划项目(2017YFD0101803)作者简介:徐海(1981-),男,江苏响水人,博士,副研究员,主要从事蔬菜遗传育种研究。(E-mail)xuhai407@163.com
更新日期/Last Update: 2020-03-13