[1]李俣珠,杨豪,蒋熊丽,等.基于Mn掺杂ZnS量子点室温磷光法检测食品中兽药头孢哌酮钠残留[J].江苏农业学报,2019,(05):1209-1215.[doi:doi:10.3969/j.issn.1000-4440.2019.05.030]
 LI Yu-zhu,YANG Hao,JIANG Xiong-li,et al.Determination of cefoperazone sodium residues in foods based on the room temperature phosphorescence of Mn-doped ZnS quantum dots[J].,2019,(05):1209-1215.[doi:doi:10.3969/j.issn.1000-4440.2019.05.030]
点击复制

基于Mn掺杂ZnS量子点室温磷光法检测食品中兽药头孢哌酮钠残留()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年05期
页码:
1209-1215
栏目:
加工贮藏·质量安全
出版日期:
2019-10-31

文章信息/Info

Title:
Determination of cefoperazone sodium residues in foods based on the room temperature phosphorescence of Mn-doped ZnS quantum dots
作者:
李俣珠杨豪蒋熊丽黄龙李金蔚刘潘吴施未陈姝娟
(四川农业大学食品学院,四川雅安625014)
Author(s):
LI Yu-zhuYANG HaoJIANG Xiong-liHUANG LongLI Jin-weiLIU PanWU Shi-weiCHEN Shu-juan
(College of Food Science, Sichuan Agricultural University, Ya′an, 625014, China)
关键词:
水相共沉淀法Mn掺杂ZnS量子点室温磷光头孢哌酮钠
Keywords:
water-phase coprecipitationMn-doped ZnS quantum dotsroom temperature phosphorescence (RTP)cefoperazone sodium
分类号:
TS201.6
DOI:
doi:10.3969/j.issn.1000-4440.2019.05.030
文献标志码:
A
摘要:
以水相共沉淀法合成了L-半胱氨酸(L-cys)修饰的Mn掺杂ZnS量子点(L-cys-Mn∶ZnS QDs)。基于头孢哌酮钠可通过电荷转移猝灭L-cys修饰的Mn∶ZnS量子点室温磷光的原理,建立了一种简单、快速检测食品中头孢哌酮钠微量残留的新方法。结果表明:当pH=6.4,反应时间为40 min时,量子点的磷光猝灭程度与头孢哌酮钠浓度呈良好的线性关系,线性范围为0.025~2.000 μg/ml,相关系数(r)为0.997 3,方法检出限为0.016 μg/ml,相对标准偏差为2.3%。该方法应用于牛奶和蜂蜜中头孢哌酮钠测定的加标回收率分别为93.8%~102.1%和95.5%~99.6%。
Abstract:
The Mn-doped ZnS quantum dots (QDs) modified by L-Cysteine (L-cys) were prepared using water-phase coprecipitation. Based on that cefoperazone sodium could quench the room-temperature phosphorescence (RTP) of L-cys-Mn: ZnS quantum dots through charge transfer, a relatively simple and fast detection method for tracing cefoperazone sodium in food was developed. The experimental results showed that, at pH 6.4 and a reaction time of 40 min, the phosphorescence quenching degree of QDs had a linear relationship(r=0.997 3) with cefoperazone sodium in the concentration range of 0.025-2.000 μg/ml. The detection limit of the method was 0.016 μg/ml,and the relative standard deviation was 2.3%. The method has been successfully applied for the detection of cefoperazone sodium in the milk and honey with the recoveries of 93.8%-102.1% and 95.5%-99.6%, respectively.

参考文献/References:

[1]MURTAZA S, ABBAS A, REHMAN R, et al. Comparativeanalysis of cefotaxime sodium and cefoperazone sodium drugs activity and their phytochemical combinations against bacteria[J]. Asian Journal of Chemistry, 2015, 27(5):1704-1706.
[2]CAGNARDI P, VILLA R, GALLO M, et al. Cefoperazone sodium preparation behavior after intramammary administration in healthy and infected cows[J]. Journal of Dairy Science, 2010, 93(9):4105-4110.
[3]王娟. 头孢哌酮钠及其复方制剂致皮肤不良反应553例处理方案分析[J]. 中国药业, 2015, 24(19): 58-59.
[4]LI F S, XU Z X, XIAO H B, et al. Simultaneous determination of sulbactam sodium and cefoperazone sodium in sulperazon by high performance liquid chromatography[J]. ChineseJournal of Chromatography, 2000, 18(6): 525-526.
[5]KARAGEORGOU E G, SAMANIDOU V F, PAPADOYANNIS I N. Ultrasound-assisted matrix solid phase dispersive extraction for the simultaneous analysis of β-lactams (four penicillins and eight cephalosporins) in milk by high performance liquid chromatography with photodiode array detection[J]. Journal of Separation Science, 2012, 35(19):2599-2607.
[6]SHAO Y X, CHEN G H, FANG R, et al. Analysis ofsix β-lactam residues in milk and egg by micellar electrokinetic chromatography with large-volume sample stacking and polarity switching[J]. Journal of Agricultural and Food Chemistry, 2016, 64(17):3456.
[7]刘洪斌, 文一, 刘勇军, 等. LC-MS/MS法检测牛奶中14种β-内酰胺类抗生素残留[J]. 分析试验室, 2014(2):221-224.
[8]LI Y, LU J. Chemiluminescence flow-injection analysis of β-lactam antibiotics using the luminol-permanganate reaction[J]. Luminescence, 2006, 21(4):251-255.
[9]ELAZAZY M, SHALABY A, ELBOLKINY M, et al. Spectrophotometric determination of cefepime hydrochloride, cefoperazone sodium, ceftazidime pentahydrate. cefuroxime sodium and etamsylate using ammonium molybdate[J]. Scientia Pharmaceutica, 2003, 71(3): 211-228.
[10]MEDINTZ I L, UYEDA H T, GOLDMAN E R, et al. Quantum dot bioconjugates for imaging, labelling and sensing[J]. Nature Materials, 2005, 4(6):435-446.
[11]WINNIK F M, MAYSINGER D. Quantum dot cytotoxicity and ways to reduce it[J]. Acc Chem Res, 2013, 46(3):672-680.
[12]WEGNER K D, HILDEBRANDT N. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors[J]. Chemical Society Reviews, 2015, 44(14): 4792-4834.
[13]李玉美, 班睿, 谢兵, 等. 量子点在食品安全检测中的应用研究[J]. 江苏农业学报, 2015, 31(1):222-230.
[14]PETRYAYEVA E, ALGAR W R, MEDINTZ I L. Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging[J]. AppliedSpectroscopy, 2013, 67(3): 215-252.
[15]WU P, YAN X P. Doped quantum dots for chemo/biosensing and bioimaging[J]. Chemical Society Reviews, 2013, 42(12):5489-5521.
[16]BWATANGLANG I B, MOHAMMAD F, YUSOF N A, et al. Folic acid targeted Mn: ZnS quantum dots for theranostic applications of cancer cell imaging and therapy[J]. InternationalJournal of Nanomedicine, 2016, 11: 413-428.
[17]WU P, ZHANG J, WANG S, et al. Sensing during in situ growth of Mn-doped ZnS QDs: a phosphorescent sensor for detection of H2S in biological samples[J]. Chemistry-A European Journal, 2014, 20(4):952-956.
[18]吴鹏, 张金懿, 严秀平. 基于Mn掺杂ZnS量子点的室温磷光传感应用的研究进展[J]. 分析化学, 2017, 45(12):88-94.
[19]WANG H F, HE Y, JI T R, et al. Surfacemolecular imprinting on Mn-doped ZnS quantum dots for room-temperature phosphorescence optosensing of pentachlorophenol in water[J]. Analytical Chemistry, 2009, 81(4):1615-1621.
[20]HUANG F, CHEN G. Preparation and application of L-cysteine-modified CdSe/CdS core/shell nanocrystals as a novel fluorescence probe for detection of nucleic acid[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2008, 70(2):318-323.
[21]DIAZ-DIESTRA D, THAPA B, BELTRAN-HUARAC J, et al. L-cysteine capped ZnS: Mn quantum dots for room-temperature detection of dopamine with high sensitivity and selectivity[J]. Biosensors and Bioelectronics, 2017, 87: 693-700.
[22]HE Y, WANG H F, YAN X P. Exploring Mn-doped ZnS quantum dots for the room-temperature phosphorescence detection of enoxacin in biological fluids[J]. Analytical Chemistry, 2008, 80(10):3832-3837.
[23]BAN R, LI J, CAO J, et al. Highly luminescent glutathione-capped ZnS:Mn/ZnS core/shell doped quantum dots for targeted mannosyl groups expression on the cell surface[J]. Analytical Methods, 2013, 5(21):5929-5937.
[24]XU C, ZHOU R, HE W, et al. Fastimaging of eccrine latent fingerprints with nontoxic Mn-doped ZnS QDs[J]. Analytical Chemistry, 2014, 86(7):3279-3283.
[25]CHUNG J H, AH C S, JANG D J. Formation anddistinctive decay times of surface- and lattice-bound Mn2+ impurity luminescence in ZnS nanoparticles[J]. Journal of Physical Chemistry B, 2001, 105(19):4128-4132.
[26]SAUER K, SCHEER H, SAUER P. Frster transfer calculations based on crystal structure data from Agmenellum quadruplicatum C-phycocyanin[J]. Photochemistry and Photobiology, 1987, 46(3): 427-440.
[27]SPANHEL L, WELLER H, HENGLEIN A. Photochemistry of semiconductor colloids. 22. Electron ejection from illuminated cadmium sulfide into attached titanium and zinc oxide particles[J]. Journal of the American Chemical Society, 1987, 109(22):1-6.

备注/Memo

备注/Memo:
收稿日期:2019-04-05 基金项目:成都市技术创新研发项目(2018-YF05-00765-SN);四川省青年软件创新工程项目(2019100);国家级大学生创新创业训练计划项目(201810626003);科研兴趣培养计划项目(2019531、2019532) 作者简介:李俣珠(1996-),女,四川广元人,硕士研究生,主要从事食品快速检测研究。(E-mail) lyz611@foxmail.com 通讯作者:陈姝娟,(E-mail)chenshujuan1@163.com
更新日期/Last Update: 2019-11-11