[1]刘蓓一,宦海琳,顾洪如,等.不同发酵时期大麦青贮品质和微生物多样性变化[J].江苏农业学报,2019,(03):653-660.[doi:doi:10.3969/j.issn.1000-4440.2019.03.021]
 LIU Bei-yi,HUAN Hai-lin,GU Hong-ru,et al.Changes of silage quality and microbial diversity in barley during different fermentation periods[J].,2019,(03):653-660.[doi:doi:10.3969/j.issn.1000-4440.2019.03.021]
点击复制

不同发酵时期大麦青贮品质和微生物多样性变化()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年03期
页码:
653-660
栏目:
畜牧兽医·水产养殖
出版日期:
2019-06-30

文章信息/Info

Title:
Changes of silage quality and microbial diversity in barley during different fermentation periods
作者:
刘蓓一12宦海琳12顾洪如12许能祥12沈琴3丁成龙12
(1.江苏省农业科学院畜牧研究所,江苏南京210014;2.江苏省农业科学院农业农村部种养结合重点实验室,江苏南京210014;3.大丰区众鑫农机服务专业合作社,江苏盐城224100)
Author(s):
LIU Bei-yi12HUAN Hai-lin12GU Hong-ru12XU Neng-xiang122SHEN Qin3DING Cheng-long12
(1.Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;2.Key Laboratory of Crop and Animal Integrated Farming Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;3.Zhongxin Agricultural Machinery Service Cooperative of Dafeng, Yancheng 224100, China)
关键词:
:青贮品质大麦青贮Miseq高通量测序细菌菌群
Keywords:
silage qualitybarley silageMiseq highthroughput sequencingbacterial community
分类号:
S512.3
DOI:
doi:10.3969/j.issn.1000-4440.2019.03.021
文献标志码:
A
摘要:
本试验旨在阐明不同发酵时期大麦青贮发酵品质及细菌多样性的动态变化。试验分别在青贮第2 d、青贮第14 d、青贮第60 d和有氧暴露第5 d采样,对青贮饲料的发酵品质、营养成分等进行测定,并采用Miseq高通量测序技术分析细菌的多样性和组成。结果表明,与青贮第2 d相比,大麦青贮第60 d的pH值显著下降(P<005),乳酸含量显著升高(P<005)。青贮第2 d的细菌优势菌群是魏斯氏菌属(Weissella)和乳杆菌属(Lactobacillus),相对丰度分别为45960%、30680%。青贮第14 d的细菌优势菌群为乳杆菌属(Lactobacillus),相对丰度为74720%,其次是魏斯氏菌属(Weissella),相对丰度为13170%。青贮第60 d的细菌优势菌群为乳杆菌属(Lactobacillus),相对丰度为96740%。有氧暴露第5 d乳杆菌属(Lactobacillus)的相对丰度为0710%,有氧暴露后滋生了不动杆菌属(Acinetobacter)、沙雷氏菌属(Serratia)等有害菌。综上所述,青贮第2~60 d大麦青贮的优势菌群是乳杆菌属,而有氧暴露后菌群结构发生了变化,不动杆菌属、沙雷氏菌属等有害菌的相对丰度增加。
Abstract:
The objective of this experiment was to compare the fermentation quality and microbial diversity of barley silage in different fermentation periods. The experiment was carried out on the 2nd day of silage, the 14th day of silage, the 60th day of silage and on the 5th day of aerobic exposure, and the fermentation quality and nutritional components of barley silage were analyzed. Bacterial diversity and composition of barley silage in different fermentation periods were analyzed by Miseq highthroughput sequencing technique. The results showed that compared with those on the second day of silage, the pH of barley after 60 days of silage fermentation was significantly decreased (P<005), and the lactic acid content was significantly increased (P<005). The dominant bacteria on the second day of silage were Weissella and Lactobacillus, with relative abundance of 45960% and 30680%, respectively. The dominant bacterium on the 14th day of silage was Lactobacillus, with relative abundance of 74720%, followed by Weissella with relative abundance of 13170%. The dominant bacterium on the 60th day of silage was Lactobacillus with a relative abundance of 96740%. The relative abundance of Lactobacillus was 0710% on the 5th day of aerobic exposure. Undesirable microorganisms such as Acinetobacter and Serratia were produced after aerobic exposure. In conclusion, the dominant flora is Lactobacillus on the 2nd to 60th day of silage, and the structure of flora changes after aerobic exposure, and the abundance of harmful bacteria such Acinetobacter and Serratia increases.

参考文献/References:

[1]HARGREAVES A, HILL J, LEAVER J D Effect of stage of growth on the chemical composition, nutritive value and ensilability of wholecrop barley[J]. Animal Feed Science and Technology, 2009, 152(1/2):50-61.
[2]张适,常杰,胡宗福,等.青贮饲料有害微生物及其抑制措施[J].动物营养学报,2017,29(12):4308-4313.
[3]吕文龙,刁其玉, 闫贵龙.布氏乳杆菌对青玉米秸青贮发酵品质和有氧稳定性的影响[J].草业学报, 2011, 20(3):143-148.
[4]田静,谢昭良,刘家杏,等.冬闲田种植大麦不同生育期的营养价值和青贮品质[J].草业科学,2017,34(4):753-760.
[5]KIM D H, AMANULLAH S M, LEE H J, et al. Effect of microbial and chemical combo additives on nutritive value and fermentation characteristic of whole crop barley silage[J].AsianAustralasion Journal of Animal Science,2015,28(9):1274-1280.
[6]倪奎奎.全株水稻青贮饲料中微生物群落以及发酵品质分析[D].郑州:郑州大学,2016.
[7]熊乙,赵燕梅,许庆方,等.五个地区玉米青贮菌群多样性的研究[J].草业科学,2017, 235(5):16-22.
[8]RASMUSSEN R R, RASMUSSEN P H, LARSEN T O, et al. In vitro cytotoxicity of fungi spoiling maize silage[J]. Food and Chemical Toxicology, 2011, 49(1):31-44.
[9]LIN C J, BOLSEN K K, BRENT B E, et al. Epiphytic lactic acid bacteria succession during the preensiling and ensiling periods of alfalfa and maize[J]. Journal of Applied Microbiology, 1992, 73(5):375-387.
[10]ROSSI F, DELLAGLIO F. Quality of silages from Italian farms as attested by number and identity of microbial indicators[J]. Journal of Applied Microbiology, 2007, 103(5):1707-1715.
[11]GRAF K, ULRICH A, IDLER C, et al. Bacterial community dynamics during ensiling of perennial ryegrass at two compaction levels monitored by terminal restriction fragment length polymorphism[J]. Journal of Applied Microbiology, 2016,120(6):1479-1491.
[12]WANG Y S, SHI W, HUANG L T, et al. The effect of lactic acid bacterial starter culture and chemical additives on wilted rice straw silage[J]. Animal Science Journal, 2016, 87(4):525-535.
[13]MCGARVEY J A, FRANCO R B, PALUMBO J D, et al. Bacterial population dynamics during the ensiling of Medicago sativa (alfalfa) and subsequent exposure to air[J]. Journal of Applied Microbiology, 2013, 114(6):1661-1670.
[14]ASMA Z, SYLVIE C, LAURENT C, et al. Microbial ecology of the rumen evaluated by 454 GS FLX pyrosequencing is affected by starch and oil supplementation of diets[J]. FEMS Microbiology Ecology, 2013, 83(2):504-514.
[15]ZHENG M L, NIU D Z, JIANG D, et al. Dynamics of microbial community during ensiling directcut alfalfa with and without LAB inoculant and sugar[J]. Journal of Applied Microbiology, 2017, 122(6):1456-1470.
[16]刘晶晶.生物添加剂对柳枝稷青贮的作用及机理研究[D].北京:中国农业大学, 2015.
[17]EDGAR R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10):996-998.
[18]KEMP P F, ALLER J Y. Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us[J]. FEMS Microbiology Ecology, 2004, 47(2): 161-177.
[19]WANG Q, GARRITY G M, TIEDJE J M, et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology, 2007, 73(16): 5261-5267.
[20]杨云贵,张越利,杜欣,等.2种玉米青贮饲料青贮过程中主要微生物的变化规律研究[J].畜牧兽医学报,2012, 43(3):397-403.
[21]万学瑞,吴建平,雷赵民,等.优良抑菌活性乳酸菌对玉米青贮及有氧暴露期微生物数量和pH的影响[J].草业学报,2016,25(4):204-211.
[22]王保平,董晓燕,董宽虎,等.有机酸对全株玉米青贮有氧稳定性的影响[J].草地学报,2013, 21(5): 991-997.
[23]STOKES M R. Effects of an enzyme mixture, an inoculant, and their interaction on silage fermentation and dairy production[J]. Journal of Dairy Science, 1992, 75(3): 764-773.
[24] DRIEHUIS F, ELFERINK S O, SPOELSTRA S F. Anaerobic lactic acid degradation during ensilage of whole crop maize inoculated with Lactobacillus buchneri inhibits yeast growth and improves aerobic stability[J]. Journal of Applied Microbiology, 1999, 87(4): 583-594.
[25]MUCK R E. Recent advances in silage microbiology[J]. Agricultural and Food Science, 2013, 22(1):3-15.
[26]EIKMEYER F G, KFINGER P, POSCHENEL A, et al. Metagenome analyses reveal the influence of the inoculant Lactobacillus buchneri CD034 on the microbial community involved in grass ensiling[J]. Journal of Biotechnology, 2013, 167(3):334-343.
[27]ROMERO J J, ZHAO Y, BALSECAPAREDES M A, et al. Laboratory silo type and inoculation effects on nutritional composition, fermentation, and bacterial and fungal communities of oat silage[J]. Journal of Dairy Science, 2017, 100(3):1812-1828.
[28]PENG K, JIN L, NIU Y D, et al. Condensed tannins affect bacterial and fungal microbiomes and mycotoxin production during ensiling and upon aerobic exposure[J]. Applied and Environmental Microbiology, 2018, 84(5): 1-20.
[29]胡宗福,常杰,萨仁呼,等.基于宏基因组学技术检测全株玉米青贮期间和暴露空气后的微生物多样性[J].动物营养学报, 2017, 29(10):3750-3760.
[30]ENNAHAR S, CAI Y M, FUJITA Y. Phylogenetic diversity of lactic acid bacteria associated with paddy rice silage as determined by 16S ribosomal DNA analysis[J]. Applied and Environmental Microbiology, 2003, 69(1):444-451.
[31]陶雅,李峰,高凤芹,等.籽粒苋与青贮玉米混贮品质及微生物特性研究[J].草业学报,2016, 25(12):119-129.
[32]陶莲,刁其玉.青贮发酵对玉米秸秆品质及菌群构成的影响[J].动物营养学报, 2016, 28(1):198-207.
[33]LI Y, NISHINO N. Effects of inoculation of Lactobacillus rhamnosus and Lactobacillus buchneri on fermentation, aerobic stability and microbial communities in whole crop corn silage[J]. Grassland Science, 2011, 57(4): 184-191.
[34]LIU Q H, SHAO T, ZHANG J G. Determination of aerobic deterioration of corn stalk silage caused by aerobic bacteria[J]. Animal Feed Science and Technology, 2013, 183(3/4): 124-131.
[35]LIU Q, ZHANG J, SHI S, et al. The effects of wilting and storage temperatures on the fermentation quality and aerobic stability of stylo silage[J].Animal Science Journal,2011,82(4):549-553.
[36]PARVIN S, WANG C, LI Y, et al. Effects of inoculation with lactic acid bacteria on the bacterial communities of Italian ryegrass, whole crop maize, guinea grass and rhodes grass silages[J]. Animal Feed Science and Technology, 2010,160(3/4):160-166.

备注/Memo

备注/Memo:
收稿日期:2018-10-24 基金项目:江苏省农业科技自主创新项目[CX (17)1005] 作者简介:刘蓓一(1984-),女,江苏武进人,博士,助理研究员,主要从事饲草调制与草食动物营养研究。(Tel)15105198288;(E-mail)byliu1984@qq.com 通讯作者:丁成龙,(E-mail)dingcl@jaas.ac.cn
更新日期/Last Update: 2019-06-30