[1]ÖÜÖÒ¿­,Àî»Ô,ÇØÖñ,µÈ.×ÔȻͨ·çÖíÉá¸ßѹÅçÎí½µÎÂϵͳµÄ½µÎÂЧÂÊ[J].½­ËÕũҵѧ±¨,2018,(01):106-113.[doi:doi:10.3969/j.issn.1000-4440.2018.01.016]
¡¡ZHOU Zhong-kai,LI Hui,QIN Zhu,et al.Cooling efficiency of a high-pressure fog cooling system for natural ventilation pig barn[J].,2018,(01):106-113.[doi:doi:10.3969/j.issn.1000-4440.2018.01.016]
µã»÷¸´ÖÆ

×ÔȻͨ·çÖíÉá¸ßѹÅçÎí½µÎÂϵͳµÄ½µÎÂЧÂÊ()
·ÖÏíµ½£º

½­ËÕũҵѧ±¨[ISSN:1006-6977/CN:61-1281/TN]

¾í:
ÆÚÊý:
2018Äê01ÆÚ
Ò³Âë:
106-113
À¸Ä¿:
ÐóÄÁÊÞÒ½¡¤Ë®²úÑøÖ³
³ö°æÈÕÆÚ:
2018-02-25

ÎÄÕÂÐÅÏ¢/Info

Title:
Cooling efficiency of a high-pressure fog cooling system for natural ventilation pig barn
×÷Õß:
ÖÜÖÒ¿­12Àî»Ô12ÇØÖñ12ËïÙ»12¹ËºéÈç3ÏÄÀñÈç12Óà¸Õ12
£¨1.½­ËÕÊ¡Å©Òµ¿ÆѧԺũҵÉèÊ©Óë×°±¸Ñо¿Ëù£¬½­ËÕÄϾ©210014£»2.Å©Òµ²¿³¤½­ÖÐÏÂÓÎÉèÊ©Å©Òµ¹¤³ÌÖصãʵÑéÊÒ,½­ËÕÄϾ©210014£»3.½­ËÕÊ¡Å©Òµ¿ÆѧԺÐóÄÁÑо¿Ëù£¬½­ËÕÄϾ©210014£©
Author(s):
ZHOU Zhong-kai12LI Hui12QIN Zhu12SUN Qian112GU Hong-ru3XIA li-ru12YU Gang12
(1.Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;2.Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture, Nanji
¹Ø¼ü´Ê:
ÖíÉá¸ßѹÅçÎí½µÎÂϵͳζÈÏà¶Ôʪ¶ÈÎÂʪ¶ÈÖ¸Êý×ÛºÏÆøºòÖ¸Êý
Keywords:
pig barnhigh-pressure fog cooling systemtemperaturerelative humiditytemperature-humidity indexcomprehensive climate index
·ÖÀàºÅ:
S815.9
DOI:
doi:10.3969/j.issn.1000-4440.2018.01.016
ÎÄÏ×±êÖ¾Âë:
A
ÕªÒª:
Ϊȷ¶¨¸ßѹÅçÎí½µÎÂϵͳÔÚÏļ¾×ÔȻͨ·ç·¢½Í´²ÖíÉáµÄÊÊÓÃÐÔ£¬Ñ¡Ôñ2¶°·¢½Í´²Óý·ÊÖíÉᣬ¶Ô²»Í¬ÆøÏóÌõ¼þÏÂÖíÉáÄÚµÄÎÂʪ¶ÈºÍ·çËÙ½øÐÐÁ˲ⶨ£¬Ñ¡ÔñÎÂʪ¶ÈÖ¸Êý¡¢ÈȸººÉÖ¸ÊýºÍ×ÛºÏÆøºòÖ¸Êý3ÖÖÖ¸±êÆÀ¹ÀÁ˸ßѹÅçÎí½µÎÂϵͳ¶ÔÖíÉáÄÚÈÈ»·¾³µÄÓ°Ïì¡£½á¹ûÏÔʾÊÔÑéÆÚ¼ä¸ßѹÅçÎíϵͳµÄ½µÎÂЧÂÊÔÚ18.4%ÖÁ89.2%Ö®¼ä£¬Æ½¾ùΪ59.1%£»ÓëÎÞÅçÎíÖíÉáÏà±È£¬¸ßѹÅçÎí½µÎÂϵͳ¿ÉÓÐЧ½µµÍÉáÄÚζÈ6.2 ¡æ£¬×î¸ß½µµÍ10.5 ¡æ£¬Êª¶ÈÔö¼Ó23.9¸ö°Ù·Öµã£¨Æ½¾ùʪ¶ÈΪ72.2%£©£»Õû¸öÊÔÑéÆڼ䣬ÅçÎíÖíÉáƽ¾ùÎÂʪ¶ÈÖ¸Êý£¨THI£©Îª74.3£¨±ÈÎÞÅçÎíÖíÉá½µµÍ12.2£©£¬ÈÈÓ¦¼¤¼õÉÙ23.7%£¬ÅçÎíÖíÉáÈȸººÉ¼õÉÙ2 713£¬×ÛºÏÆøºòÖ¸Êý£¨CCI£©Æ½¾ù½µµÍ4.8 ¡æ¡£¸ßѹÅçÎí½µÎÂϵͳ¿ÉÒÔÓÐЧ»º½â×ÔȻͨ·ç·¢½Í´²ÖíÉáÄÚÉúÖíÔâÊܵÄÈÈÓ¦¼¤¡£
Abstract:
To investigate the suitability of high-pressure fogging system (HPFS) for natural ventilation pig barn (NVB) with bedding system£¬ experiments were conducted in two naturally ventilated pig barns under summer conditions. One pig barn was used as the treatment barn (fogged house, FNVB) and another was used as the control house (un-fogged house, UFNVB). Cooling efficiency of HPFS was defined by determination of dry-bulb temperature, relative humidity and air velocity in the interior of pig barns in different weather conditions. Heat stress was assessed using the temperature humidity index (THI) and the daily THI-hrs index and comprehensive climate index (CCI) for evaluation of thermal comfort in pig barn. The results showed that the cooling efficiency of the HPFS ranged from 18.4% to 89.2%, and the average value was 59.1%. The HPFS could effectively decrease the indoor temperature by 6.2 ¡æ. The greatest difference of temperature between UFNVB and FNVB was 10.5 ¡æ. The air relative humidity in the FNVB was 72.2%, increased by 23.9%. The THI value was reduced by 12.2 in the FNVB (average value was 74.3). The values of the daily THI-hrs index and CCI under heat-stress conditions in FNVB were reduced by 2 713 and 4.8 ¡æ, respectively. In conclusion, high-pressure fog cooling system can effectively alleviate the heat stress of pigs in natural ventilation pig barn with bedding system.

²Î¿¼ÎÄÏ×/References:

[1]PLACE S E, MITLOEHNER F M. The nexus of environmental quality and livestock welfare [J]. Annual Review of Animal Biosciences, 2014, 2:555-569.
[2]NISSIM S. Effects of heat stress on the welfare of extensively managed domestic ruminants [J]. Livestock Production Science,2000, 67:1-18.
[3]BAUMGARD L H, RHOADS J R P. Effects of heat stress on postabsorptive metabolism and energetics [J]. Annual Review of Animal Biosciences, 2013, 1: 311-337.
[4]KUCZYNSKI T, BLANESVIDAL V, LI B M, et al. Impact of global climate change on the health, welfare and productivity of intensively housed livestock [J]. International Journal of Agricultural and Biological Engineering, 2011, 4(1):1-22.
[5]NARDONE A, RONCHI B, LACETERA N, et al. Effects of climate changes on animal production and sustainability of livestock systems [J]. Livestock Science, 2010, 130: 57-69.
[6]PANAGAKIS P, AXAOPOULOS P. Comparing fogging strategies for pig rearing using simulations to determine apparent heat-stress indices [J]. Biosystems Engineering, 2008, 99: 112-118.
[7]BRIDGES T C, GATES R S, TURNER L W. Stochastic assessment of evaporative misting for growing-finishing swine in Kentucky [J]. Applied Engineering in Agriculture, 1992, 8(5): 685-693.
[8]WANG C, CAO W, LI B, et al. A fuzzy mathematical method to evaluate the suitability of an evaporative pad cooling system for poultry houses in China [J]. Biosystems Engineering, 2008, 101(3): 395-405.
[9]LUCAS E M, RANDALL J M, MENESES J F, et al. Potential for evaporative cooling during heat stress periods in pig production in Portugal (Alentejo) [J]. Journal of Agricultural Engineering Research, 2000, 76: 363-371.
[10]лÓêÇç,Áõäëε,ÍõÃÀÖ¥,µÈ. Óд°ÃܱÕʽÖíÉáË®¿Õµ÷¼¼ÊõÏļ¾½µÎÂЧ¹û[J]. ¼ÒÐóÉú̬ѧ±¨, 2015, 36(10): 49-55.
[11]Âí³Ðΰ,ÃçÏãö©. Å©ÒµÉúÎï»·¾³¹¤³Ì[M]. ±±¾©£ºÖйúÅ©Òµ³ö°æÉ磬2005.
[12]DONG H, TAO X, LI Y, et al. Comparative evaluation of cooling systems for farrowing sows [J]. American Society of Agricultural Engineers, 2001, 17: 91-96.
[13]Öì־ƽ. ¿ª·ÅʽÖíÉáͨ·çÓëÅçÎíÕô·¢½µÎÂϵͳµÄÑо¿[D]. ºÏ·Ê£º°²»ÕÅ©Òµ´óѧ£¬2002.
[14]HAEUSSERMANN A, HARTUNG E, JUNGBLUTH T, et al. Cooling effects and evaporation characteristics of fogging systems in an experimental piggery [J].Biosystems Engineering, 2007, 97: 395-405.
[15]BOTTO L, LENDELOV¦B J, STRMEVOV¦B A, et al. The effect of evaporative cooling on climatic parameters in a stable for sows [J]. Research in Agricultural Engineering, 2014, 60 (Special Issue):85-91.
[16]TOIDA H, KOZAI T, OHYAMA K, et al. Enhancing fog evaporation rate using an upward air stream to improve greenhouse cooling performance. Biosystems Engineering, 2006, 93(2)£º205-211.
[17]ABDELGHANY A M, KOZAI T. Cooling efficiency of fogging systems for greenhouses [J]. Biosystems Engineering, 2006, 94(1): 97-109.
[18]FRANCO A, VALERA D L, PE¦rA A. Energy efficiency in greenhouse evaporative cooling techniques: cooling boxes versus cellulose pads [J]. Energies ,2014, 7: 1427-1447
[19]STULL R B. Wet-Bulb temperature from relative humidity and air temperature [J]. Journal of Applied Meteorology and Climatology, 2011, 50 (11): 2267-2269.
[20]BOHMANOVA J, MISZTAL I, COLE J B. Temperature-humidity indices as indicators of milk production losses due to heat stress[J]. Journal of Dairy Science, 2007, 90(4): 1947-1956.
[21]SEGNALINI M, BERNABUCCI U, VITALI A, et al. Temperature humidity index scenarios in the Mediterranean basin [J]. International Journal of Biometeorology, 2013, 57: 451-458.
[22]SEGNALINI M, NARDONE A, BERNABUCCI U, et al. Dynamics of the temperature-humidity index in the Mediterranean basin [J]. International Journal of Biometeorology, 2011, 55: 253-263.
[23]WEGNER K, LAMBERTZ C, DA ÿðþ ‰C G, et al. Climatic effects on sow fertility and piglet survival under influence of a moderate climate [J]. Animal, 2014, 8(9): 1526-1533.
[24]ZHOU Z, QIN Z, LI H, et al. Evaluation of temperature-humidity index in a growing-finishing pig bedding system [C]//NI J Q, LIM T T, WANG C. Animal environment and welfare-proceedings of international symposium. Beijing: China Agriculture Press, 2015: 34-41.
[25]PAPANASTASIOU D, BARTZANAS T, PANAGAKIS P. Assessment of a typical Greek sheep barn based on potential heat-stress of dairy ewes [J]. Applied Engineering in Agriculture, 2015, 30(6): 953-959.
[26]PANAGAKIS P, CHRONOPOULOU E. Preliminary evaluation of the apparent short term heat-stress of dairy ewes reared under hot summer conditions [J]. Applied Eng in Agric, 2010, 26(6):1035-1042.
[27]MADER T L, JOHNSON L J, GAUGHAN J B. A comprehensive index for assessing environmental stress in animals [J]. Journal of Animal Science, 2010, 88:2153-2165
[28]ÕÅÑÞÁá. ÕÚÑôÍø¶ÔÏļ¾ÎÂÊÒСÆøºòÓ°ÏìµÄÑо¿[D]. ÄϾ©£ºÄϾ©Å©Òµ´óѧ£¬2008.
[29]FRANCO A, VALERA D L, PE¦rA A. Energy efficiency in greenhouse evaporative cooling techniques: Cooling boxes versus cellulose pads [J]. Energies, 2014, 7: 1427-1447.
[30]LI S, WILLITS D H. Comparing low-pressure and high-pressure fogging systems in naturally ventilated greenhouses [J]. Biosystems Engineering, 2008, 101(1): 69-77.
[31]CIGR. Report of working group on climatization of animal houses [EB/OL].(1984)
[2016-04-25] http://www.cigr.org/documents/CIGR-Workinggroupreport1984.
[32]AXAOPOULOS P, PANAGAKIS P. Simulation comparison of evaporative pads and fogging on air temperature inside a growing swine building [J]. Transactions of the ASABE, 2006, 49(1): 215-219.

±¸×¢/Memo

±¸×¢/Memo:
ÊÕ¸åÈÕÆÚ£º2017-07-07 »ù½ðÏîÄ¿£º½­ËÕÊ¡Å©Òµ¿Æ¼¼×ÔÖ÷´´Ð»ù½ðÏîÄ¿[CX(12)1001-04]£»½­ËÕÊ¡¿Æ¼¼Ö§³Å¼Æ»®ÏîÄ¿(BE2014342-1) ×÷Õß¼ò½é£ºÖÜÖÒ¿­£¨1984-£©£¬ÄУ¬É½¶«ÜÝƽÈË£¬Ë¶Ê¿£¬ÖúÀíÑо¿Ô±£¬Ö÷Òª´ÓÊÂÐóÇÝÉú²ú¹ý³Ì»·¾³ÖÊÁ¿¿ØÖÆÓëÎÛȾÎïÅŷżà²âÑо¿£¬(E-mail)zhouzk@jaas.ac.cn ͨѶ×÷ÕߣºÓà¸Õ£¬(E-mail)yug55@163.com
¸üÐÂÈÕÆÚ/Last Update: 2018-03-06