[1]陶鸿伟,孟苓凤,张建岭,等.复配植物精油的协同抗菌活性及作用机制[J].江苏农业学报,2025,(07):1429-1437.[doi:doi:10.3969/j.issn.1000-4440.2025.07.019]
 TAO Hongwei,MENG Lingfeng,ZHANG Jianling,et al.Synergistic antimicrobial activity and mechanism of action of composite plant essential oils[J].,2025,(07):1429-1437.[doi:doi:10.3969/j.issn.1000-4440.2025.07.019]
点击复制

复配植物精油的协同抗菌活性及作用机制()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年07期
页码:
1429-1437
栏目:
加工贮藏·质量安全
出版日期:
2025-07-31

文章信息/Info

Title:
Synergistic antimicrobial activity and mechanism of action of composite plant essential oils
作者:
陶鸿伟12孟苓凤3张建岭3郭晓飞3解晓3江居立3王洪新12娄在祥12
(1.江南大学食品学院,江苏无锡214122;2.江南大学食品科学与资源挖掘全国重点实验室,江苏无锡214122;3.山东省胶类中药技术创新中心/东阿阿胶股份有限公司,山东东阿252201)
Author(s):
TAO Hongwei12MENG Lingfeng3ZHANG Jianling3GUO Xiaofei3XIE Xiao3JIANG Juli3WANG Hongxin12LOU Zaixiang12
(1.School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;2.National Key Laboratory of Food Science and Resource Mining, Jiangnan University, Wuxi 214122, China;3.Shandong Provincial Technology Innovation Center of Gelatine Traditional Chinese Medicine/Dong’e Ejiao Co., Ltd., Dong’e 252201, China)
关键词:
复合植物精油大肠杆菌金黄色葡萄球菌抑菌稳定性抑菌机理
Keywords:
composite plant essential oilsEscherichia coliStaphylococcus aureusbacteriostatic stabilitybacteriostatic mechanism
分类号:
TS201.3
DOI:
doi:10.3969/j.issn.1000-4440.2025.07.019
文献标志码:
A
摘要:
鉴于植物精油的优良抑菌性能,为突破单一植物精油在食品保鲜领域抑菌剂应用中的局限性,本研究评价了10种植物精油的抗菌活性,并探讨了其复配使用的协同效应。采用滤纸片法和棋盘稀释法,筛选出具有协同抗菌作用的精油组合,考察了其在不同温度和紫外线照射时间下的抗菌稳定性,并进一步以大肠杆菌和金黄色葡萄球菌为供试菌,探究了其抗菌机制。结果表明,肉桂精油对大肠杆菌、金黄色葡萄球菌和黑曲霉的最小抑菌含量(MIC)分别为4.0 μL/mL、8.0 μL/mL、4.0 μL/mL,而山苍子精油的MIC则分别为32.0 μL/mL、16.0 μL/mL、32.0 μL/mL。肉桂与山苍子精油以4∶6(体积比)复配时展现出显著的协同抗菌作用,抑菌圈直径超过26.00 mm。该复合精油在热处理和紫外线照射下能保持良好的抗菌稳定性。相较于单一精油,复合精油对大肠杆菌和金黄色葡萄球菌的抑制效果更佳,其中大肠杆菌中核酸和蛋白质的泄漏量分别较山苍子精油处理增加3.11倍和2.03倍,表明复合精油能破坏供试菌的细胞膜并影响其通透性。本研究结果为复合植物精油应用于食品工业提供了理论基础与科学佐证。
Abstract:
Given the outstanding antimicrobial activity of plant essential oils and the need to overcome the limitations of single essential oils in food preservation, this study evaluated the antibacterial potential of ten essential oils and explored the synergistic effects of their combinations. The disc-diffusion method and checkerboard dilution method were employed to screen for synergistic pairs, and their antimicrobial stability was further assessed under different temperatures and ultraviolet (UV) irradiation durations. The underlying mechanisms were investigated using Escherichia coli and Staphylococcus aureus as test organisms. The results showed that cinnamon essential oil exhibited minimum inhibitory concentrations (MICs) of 4.0 μL/mL, 8.0 μL/mL, 4.0 μL/mL against E. coli, S. aureus and Aspergillus niger, respectively, whereas Litsea cubeba essential oil showed MICs of 32.0 μL/mL, 16.0 μL/mL and 32.0 μL/mL, respectively. A mixture of cinnamon and L. cubeba oils with the volume ratio of 4∶6 exhibited a prominent synergistic antibacterial effect, and the inhibitory circle measured more than 26.00 mm in diameter. The composite essential oil retained good antibacterial stability after heat treatment and UV exposure. Compared with the single essential oil, the composite formulation displayed better inhibition of E. coli and S. aureus. Compared with L. cubeba essential oil treatment, the leakage of nucleic acids and proteins of E. coli under composite formulation treatment increased by 3.11 times and 2.03 times, respectively. These results indicated that the composite essential oil can disrupt bacterial membranes and affect their permeability. The findings provide a theoretical basis and scientific support for the application of composite plant essential oils in the food industry.

参考文献/References:

[1]CICHELLO S A. Oxygen absorbers in food preservation:a review[J]. Journal of Food Science and Technology,2015,52(4):1889-1895.
[2]KANELAKI A, ZAMPOUNI K, MOURTZINOS I, et al. Hydrogels,oleogels and bigels as edible coatings of sardine fillets and delivery systems of rosemary extract[J]. Gels,2022,8(10):660.
[3]BEYA M M, NETZEL M E, SULTANBAWA Y, et al. Plant-based phenolic molecules as natural preservatives in comminuted meats:a review[J]. Antioxidants,2021,10(2):263.
[4]GHANBARI M, JAMI M, DOMIG K J, et al. Seafood biopreservation by lactic acid bacteria-a review[J]. LWT-Food Science and Technology,2013,54(2):315-324.
[5]HASSOUN A, EMIR OBAN . Essential oils for antimicrobial and antioxidant applications in fish and other seafood products[J]. Trends in Food Science & Technology,2017,68:26-36.
[6]LVAREZ-MARTINEZ F, BARRAJN-CATALN E, HERRANZ-LPEZ M, et al. Antibacterial plant compounds,extracts and essential oils:an updated review on their effects and putative mechanisms of action[J]. Phytomedicine,2021,90:153626.
[7]SELVARAJAN V S, SELVARAJAN R, PANDIYAN J, et al. Unveiling the potency and harnessing the antibacterial activities of plant oils against foodborne pathogens[J]. Microbiology Research,2023,14(3):1291-1300.
[8]JU J, XU X M, XIE Y F, et al. Inhibitory effects of cinnamon and clove essential oils on mold growth on baked foods[J]. Food Chemistry,2018,240:850-855.
[9]刘晓丽,吴乐萍,杨霞芳,等. 肉桂精油处理结合真空包装对冷鲜牛肉的保鲜作用[J]. 食品研究与开发,2024,45(15):93-99.
[10]王清瑶,肖性龙,刘媛媛,等. 茶树精油对单增李斯特菌的抑制作用及其在冷鲜猪肉中的应用 [J]. 现代食品科技,2025,41(3):175-183.
[11]SHEN C, CHEN W Q, LI C Z, et al. Topical advances of edible coating based on the nanoemulsions encapsulated with plant essential oils for foodborne pathogen control[J]. Food Control,2023,145:109419.
[12]TUREK C, STINTZING F C. Impact of different storage conditions on the quality of selected essential oils[J]. Food Research International,2012,46(1):341-353.
[13]BASSOL I H N, JULIANI H R. Essential oils in combination and their antimicrobial properties[J]. Molecules,2012,17(4):3989-4006.
[14]SETHUNGA M, RANASINGHE M M K D, RANAWEERA K K D S, et al. Synergistic antimicrobial activity of essential oils and oleoresins of cinnamon (Cinnamomum zeylanicum),clove bud (Syzygium aromaticum) and ginger (Zingiber officinale)[J]. Biocatalysis and Agricultural Biotechnology,2023,51:102800.
[15]陈泳琪,柴向华,吴克刚,等. 香辛料精油结合真空包装对草鱼肉的低温保鲜研究[J]. 食品与发酵工业,2024,50(18):233-239.
[16]胡虹,杜迅,张秀江,等. 液体发酵饲料植物乳杆菌诱变育种的研究[J]. 河南科学,2019,37(4):570-574.
[17]曲春阳,潘磊庆,屠康,等. 复合精油对黄曲霉联合抑菌作用研究[J]. 食品工业科技,2012,33(10):128-130,134.
[18]黄洒. 复配精油的筛选及抗菌膜的制备研究[D]. 杭州:浙江工商大学,2019.
[19]胡璇,黄英,王凯,等. 益智精油化学成分分析及其对单核细胞增生李斯特氏菌的抑菌机理[J]. 食品科学,2024,45(16):140-150.
[20]DIAO W R, HU Q P, ZHANG H, et al. Chemical composition,antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill.)[J]. Food Control,2014,35(1):109-116.
[21]SNCHEZ ALDANA D, ANDRADE-OCHOA S, AGUILAR C N, et al. Antibacterial activity of pectic-based edible films incorporated with Mexican lime essential oil[J]. Food Control,2015,50:907-912.
[22]张赟彬,刘笑宇,姜萍萍,等. 肉桂醛对大肠杆菌和金黄色葡萄球菌的抑菌作用及抑菌机理研究[J]. 现代食品科技,2015,31(5):31-35,11.
[23]CUI H Y, ZHANG C H, LI C Z, et al. Antibacterial mechanism of oregano essential oil[J]. Industrial Crops and Products,2019,139:111498.
[24]HU W, LI C Z, DAI J M, et al. Antibacterial activity and mechanism of Litsea cubeba essential oil against methicillin-resistant Staphylococcus aureus (MRSA)[J]. Industrial Crops and Products,2019,130:34-41.
[25]XIANG F Z, ZHAO Q Q, ZHAO K, et al. The efficacy of composite essential oils against aflatoxigenic fungus Aspergillus flavus in maize[J]. Toxins,2020,12(9):562.
[26]CLIZ G, DAZ M, AUDISIO M C. Antibacterial activity of naringin derivatives against pathogenic strains[J]. Journal of Applied Microbiology,2011,111(3):731-738.
[27]MILADINOVIC D L, DIMITRIJEVIC M V, MIHAJILOV-KRSTEV T M, et al. The significance of minor components on the antibacterial activity of essential oil via chemometrics[J]. LWT,2021,136:110305.
[28]BURT S. Essential oils:their antibacterial properties and potential applications in foods:a review[J]. International Journal of Food Microbiology,2004,94(3):223-253.
[29]KANG Y X, WU K W, SUN J, et al. Preparation of Kushui Rose (Rosa setate×Rosa rugosa) essential oil fractions by double molecular distillation:aroma and biological activities[J]. Industrial Crops and Products,2022,175:114230.

相似文献/References:

[1]王翔宇,宋玉慧,荆炜,等.鸡源大肠杆菌 BlaCTX鄄M鄄125型 ESBL 基因的定位及遗传环境[J].江苏农业学报,2017,(01):141.[doi:10.3969/j.issn.1000-4440.2017.01.022 ]
 WANG Xiang-yu,SONG Yu-hui,JING Wei,et al.The location and genetic environment of blaCTX-M-125 ESBL gene from Escherichia coli in chickens[J].,2017,(07):141.[doi:10.3969/j.issn.1000-4440.2017.01.022 ]
[2]陆玉建,张韩杰,刘南南.大肠杆菌 otsA 基因的克隆和转化本生烟草[J].江苏农业学报,2015,(01):32.[doi:10.3969/j.issn.1000-4440.2015.01.005]
 LU Yu-jian,ZHANG Han-jie,LIU Nan-nan.Cloning of otsA gene in Escherichia coli and its transformation into Nicotiana benthamiana[J].,2015,(07):32.[doi:10.3969/j.issn.1000-4440.2015.01.005]
[3]钟希娜,何涛,葛展霞,等.一种对mcr-1阳性大肠杆菌具有裂解作用的噬菌体生物学特性[J].江苏农业学报,2018,(02):452.[doi:doi:10.3969/j.issn.1000-4440.2018.02.033]
 ZHONG Xi-na,HE Tao,GE Zhan-xia,et al.Characterization of a lytic bacteriophage infecting mcr-1-positive Escherichia coli[J].,2018,(07):452.[doi:doi:10.3969/j.issn.1000-4440.2018.02.033]
[4]李陇平,杨吉,白蹉蹉,等.一株绒山羊源大肠杆菌噬菌体φPTK的分离鉴定及生物学特性分析[J].江苏农业学报,2018,(04):847.[doi:doi:10.3969/j.issn.1000-4440.2018.04.019]
 LI Long-ping,YANG Ji,BAI Cuo-cuo,et al.Isolation, identification and biological properties of a lytic phage against goat (Capra hircus)-associated Escherichia coli[J].,2018,(07):847.[doi:doi:10.3969/j.issn.1000-4440.2018.04.019]
[5]王警,张雪寒,郭芸芸,等.江苏地区奶牛场blaNDM阳性大肠杆菌的分子流行病学[J].江苏农业学报,2020,(02):391.[doi:doi:10.3969/j.issn.1000-4440.2020.02.019]
 WANG Jing,ZHANG Xue-han,GUO Yun-yun,et al.Molecular epidemiological study on blaNDM-positive Escherichia coli in dairy farms in Jiangsu province[J].,2020,(07):391.[doi:doi:10.3969/j.issn.1000-4440.2020.02.019]
[6]袁橙,郭长明,左伟勇,等.制备大肠杆菌菌蜕的方法比较[J].江苏农业学报,2020,(02):410.[doi:doi:10.3969/j.issn.1000-4440.2020.02.022]
 YUAN Cheng,GUO Chang-ming,ZUO Wei-yong,et al.Comparison of preparation methods for of bacterial ghosts from Escherichia coli[J].,2020,(07):410.[doi:doi:10.3969/j.issn.1000-4440.2020.02.022]

备注/Memo

备注/Memo:
收稿日期:2024-12-06作者简介:陶鸿伟(2000-),女,湖北十堰人,硕士研究生,研究方向为天然成分抗菌与食品保鲜。(E-mail)hongweiTao0718@163.com通讯作者:娄在祥,(E-mail)louzaixiang@126.com
更新日期/Last Update: 2025-08-19