[1]徐萍,张萱,于梦雯,等.重楼全长转录组测序及生物信息学分析[J].江苏农业学报,2025,(07):1412-1421.[doi:doi:10.3969/j.issn.1000-4440.2025.07.017]
 XU Ping,ZHANG Xuan,YU Mengwen,et al.Full-length transcriptome sequencing and bioinformatics analysis of Paris[J].,2025,(07):1412-1421.[doi:doi:10.3969/j.issn.1000-4440.2025.07.017]
点击复制

重楼全长转录组测序及生物信息学分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年07期
页码:
1412-1421
栏目:
园艺
出版日期:
2025-07-31

文章信息/Info

Title:
Full-length transcriptome sequencing and bioinformatics analysis of Paris
作者:
徐萍1张萱1于梦雯1徐洪高1涂振华1章晓叶1张洁1欧征刚2陈佳3郑国伟1
(1.云南中医药大学中药学院, 云南昆明650500;2.普拉底乡人民政府农业综合服务中心,云南怒江673501;3.云南中医药大学民族医药学院,云南昆明650500)
Author(s):
XU Ping1ZHANG Xuan1YU Mengwen1XU Honggao1TU Zhenhua1ZHANG Xiaoye1ZHANG Jie1OU Zhenggang2CHEN Jia3ZHENG Guowei1
(1.College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China;2.Agricultural Comprehensive Service Center of Puladi Township People’s Government, Nujiang 673501, China;3.College of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China)
关键词:
重楼全长转录组功能注释皂苷
Keywords:
Parisfull-length transcriptomefunction annotationsaponin
分类号:
R282.71
DOI:
doi:10.3969/j.issn.1000-4440.2025.07.017
文献标志码:
A
摘要:
本研究旨在通过对重楼全长转录组数据的获取和分析,为系统挖掘重楼皂苷合成基因奠定基础。采用PacBio Sequel平台的第三代测序技术,对皂苷含量差异显著的3种重楼属植物云南重楼[Paris polyphylla Smith var. yunnanensis (Franch.) Hand.-Mazz.]、球药隔重楼(Paris fargesii Franch.)和长柱重楼[Paris forrestii (Takht.) H. Li]的根茎混合样品进行深度测序,对所得数据进行全面的生物信息学分析。共获得42 771个转录本,其中40 945个(95.73%)转录本成功比对到KEGG、NR、Swiss-Prot、TrEMBL、KOG、GO和Pfam等7大功能数据库。成功识别出与胆固醇合成相关的48个基因,特异性筛选出参与重楼皂苷修饰的2类关键酶基因:120个细胞色素P450酶基因和53个UDP-糖基转移酶基因。此外,还检测到2 327个转录因子,分别属于71个转录因子家族。在MISA分析中共发现27 451个微卫星序列(SSR),以SSR之间有重叠的复合类型最多,占全部重复类型的32.88%。综上,本研究借助高通量全长转录组测序,系统地解析了重楼根茎组织的转录谱,并成功挖掘出与重楼皂苷合成密切相关的候选基因及调控元件,为后续深入探讨重楼皂苷的生物合成分子机制奠定了基础。
Abstract:
The purpose of this study is to lay a foundation for the systematic exploration of saponin synthesis genes in Paris by obtaining the full-length transcriptome data of Paris. The third-generation sequencing technology on PacBio Sequel platform was used. In this study, the rhizome mixed samples of Paris polyphylla Smith var. yunnanensis (Franch.) Hand.-Mazz., Paris fargesii Franch. and Paris forrestii (Takht.) H. Li with significant differences in saponin content were deeply sequenced, and then the obtained data were comprehensively analyzed by bioinformatics. A total of 42 771 transcripts were obtained, of which 40 945 (95.73%) were successfully matched to seven functional databases, namely KEGG, NR, Swiss-Prot, TrEMBL, KOG, GO and Pfam. Through enrichment analysis of KEGG pathway, 48 genes related to cholesterol synthesis were successfully identified, and two kinds of key enzyme genes involved in saponin modification were specifically screened: 120 cytochrome P450 enzyme genes and 53 UDP-glucosyltransferase genes. Additionally, 2 327 transcription factors were detected, belonging to 71 transcription factor families. A total of 27 451 microsatellite sequences (SSR) were found by MISA analysis, there were the most coincident types with overlapping SSR, accounting for 32.88% of all repeat types. With the help of high-throughput full-length transcriptome sequencing technology, the transcriptome of rhizome tissue of Paris was systematically analyzed, and the candidate genes and regulatory elements closely related to saponin synthesis were successfully excavated. These findings lay the groundwork for further study on the molecular mechanism of saponin biosynthesis in Paris.

参考文献/References:

[1]张翔宇,陈晓芳,柳敏,等. 重楼属药用植物资源分布及少数民族应用研究[J]. 中国野生植物资源,2023,42(1):103-109,116.
[2]中华人民共和国国家药典委员会. 中国药典(一部)[M]. 北京:中国医药科技出版社,2020:271-272.
[3]四川省食品药品监督管理局. 四川省藏药材标准:2014年版[M]. 成都:四川科学技术出版社,2014:152-156.
[4]周姣姣,陶爱恩,何正春,等. 不同生长年限长柱重楼根茎中主要次生代谢产物的累积变化[J]. 黑龙江农业科学,2018(3):121-125.
[5]王宇飞,江媛,杨成金,等. 滇重楼化学成分、药理作用和临床应用研究进展[J]. 中草药,2022,53(23):7633-7648.
[6]张艺博,张慧中,付京,等. 重楼总皂苷的现代研究进展与展望[J]. 中国实验方剂学杂志,2024,30(1):232-243.
[7]GAO X Y, ZHANG X, CHEN W, et al. Transcriptome analysis of Paris polyphylla var. yunnanensis illuminates the biosynthesis and accumulation of steroidal saponins in rhizomes and leaves[J]. Phytochemistry,2020,178:112460.
[8]李龙星,李海峰,王成军. 9种重楼属植物叶中甾体皂苷成分差异的研究[J]. 中国民族民间医药,2023,32(19):12-18,29.
[9]CHEN Y G, YAN Q, JI Y H, et al. Unraveling the serial glycosylation in the biosynthesis of steroidal saponins in the medicinal plant Paris polyphylla and their antifungal action[J]. Acta Pharmaceutica Sinica B,2023,13(11):4638-4654.
[10]ZHU Y X, HUANG Y F, WEI K H, et al. Full-length transcriptome analysis of Zanthoxylum nitidum (Roxb. ) DC[J]. Peer J,2023,11:e15321.
[11]秦少伟,闫伟伟,李才林,等. 基于三代测序技术的植物信号通路相关基因在胡杨异形叶发生中的功能分析[J]. 分子植物育种,2023,21(20):6688-6697.
[12]ZHANG C C, REN H D, YAO X H, et al. Full-length transcriptome analysis of pecan (Carya illinoinensis) kernels[J]. G3:Genes,Genomes,Genetics,2021,11(8):jkab182.
[13]CUI Y P, GAO X Q, WANG J S, et al. Full-length transcriptome analysis reveals candidate genes involved in terpenoid biosynthesis in Artemisia argyi[J]. Frontiers in Genetics,2021,12:659962.
[14]周延清,邵露营,李慧敏,等. 地黄全长转录组分析及毛蕊花糖苷生物合成下游途径关键酶基因的挖掘与解析[J]. 植物生理学报,2022,58(1):197-206.
[15]米琪,赵艳丽,徐萍,等. 滇黄精全长转录组测序及生物信息学分析[J]. 药学学报,2024,59(6):1864-1872.
[16]余静雅,夏铭泽,张发起. 青藏高原特有植物甘青蒿的全长转录组分析[J]. 中国野生植物资源,2023,42(12):17-24.
[17]XU J Y, SHAN T Y, ZHANG J J, et al. Full-length transcriptome analysis provides insights into flavonoid biosynthesis in Ranunculus japonicus[J]. Physiologia Plantarum,2023,175(4):e13965.
[18]OUYANG H L, WANG X Y, ZHENG X L, et al. Full-length SMRT transcriptome sequencing and SSR analysis of Bactrocera dorsalis (Hendel)[J]. Insects,2021,12(10):938.
[19]BUCHFINK B, XIE C, HUSON D H. Fast and sensitive protein alignment using DIAMOND[J]. Nature Methods,2015,12(1):59-60.
[20]JU Z G, LIANG L, ZHENG Y Q, et al. Full-length transcriptome sequencing and RNA-seq analysis offer insights into terpenoid biosynthesis in Blumea balsamifera (L. ) DC[J]. Genes,2024,15(3):285.
[21]KANG Y J, YANG D C, KONG L, et al. CPC2:a fast and accurate coding potential calculator based on sequence intrinsic features[J]. Nucleic Acids Research,2017,45(W1):W12-W16.
[22]JIAO N B, XU J R, WANG Y, et al. Genome-wide characterization of post-transcriptional processes related to wood formation in Dalbergia odorifera[J]. BMC Genomics,2024,25(1):372.
[23]FENG Y Z, ZHAO Y, ZHANG J J, et al. Full-length SMRT transcriptome sequencing and microsatellite characterization in Paulownia catalpifolia[J]. Scientific Reports,2021,11(1):8734.
[24]SHI Z Y, ZHAO W Q, LI Z A, et al. Development and validation of SSR markers related to flower color based on full-length transcriptome sequencing in Chrysanthemum[J]. Scientific Reports,2022,12(1):22310.
[25]XIANG Q A, ZHANG Q J, KANG F M, et al. Identification of genes involved in biosynthesis of spirostane-type polyphyllin in Paris fargesii based on transcriptome analysis[J]. Chinese Traditional and Herbal Drugs,2023,54(20):6798-6812.
[26]LI Y, YANG H, LI Z H, et al. Advances in the biosynthesis and molecular evolution of steroidal saponins in plants[J]. International Journal of Molecular Sciences,2023,24(3):2620.
[27]HOU L X, ZHANG F R, YUAN X C, et al. Comparative transcriptome analysis reveals key genes for polyphyllin difference in five Paris species[J]. Physiologia Plantarum,2022,174(6):e13810.
[28]YIN X, LIU J, KOU C X, et al. Deciphering the network of cholesterol biosynthesis in Paris polyphylla laid a base for efficient diosgenin production in plant chassis[J]. Metabolic Engineering,2023,76:232-246.
[29]GUO S Y, YIN Y, LEI T, et al. A cycloartenol synthase from the steroidal saponin biosynthesis pathway of Paris polyphylla[J]. Journal of Asian Natural Products Research,2021,23(4):353-362.
[30]HUA X, SONG W, WANG K Z, et al. Effective prediction of biosynthetic pathway genes involved in bioactive polyphyllins in Paris polyphylla[J]. Communications Biology,2022,5(1):50.
[31]WANG X Y, FAN H, WANG B S, et al. Research progress on the roles of lncRNAs in plant development and stress responses[J]. Frontiers in Plant Science,2023,14:1138901.
[32]CHENG Q, ZENG L Q, WEN H, et al. Steroidal saponin profiles and their key genes for synthesis and regulation in Asparagus officinalis L. by joint analysis of metabolomics and transcriptomics[J]. BMC Plant Biology,2023,23(1):207.
[33]张雪,王希付,赵荣华,等. 药用植物甾体皂苷生物合成途径研究进展[J]. 中国实验方剂学杂志,2020,26(14):225-234.
[34]王晓菲,李鹏,杨玥,等. 重楼皂苷抗炎、抗氧化及抗肿瘤作用机制研究进展[J]. 药物评价研究,2023,46(12):2699-2708.
[35]何敏,郭思远,尹艳,等. 滇重楼甾体糖基转移酶的克隆及功能表征[J]. 中国中药杂志,2023,48(14):3774-3785.
[36]HE Y L, CHEN H, ZHAO J, et al. Transcriptome and metabolome analysis to reveal major genes of saikosaponin biosynthesis in Bupleurum chinense[J]. BMC Genomics,2021,22(1):839.
[37]HUSSAIN A, KHAN M I, ALBAQAMI M, et al. CaWRKY30 positively regulates pepper immunity by targeting CaWRKY40 against Ralstonia solanacearum inoculation through modulating defense-related genes[J]. International Journal of Molecular Sciences,2021,22(21):12091.
[38]MERAJ T A, FU J Y, ALI RAZA M, et al. Transcriptional factors regulate plant stress responses through mediating secondary metabolism[J]. Genes,2020,11(4):346.
[39]SHI M, ZHANG S W, ZHENG Z Z, et al. Molecular regulation of the key specialized metabolism pathways in medicinal plants[J]. Journal of Integrative Plant Biology,2024,66(3):510-531.
[40]肖亮,陈瑞兵,吴宇,等. AP2/ERF转录因子调控次生代谢产物生物合成的研究进展[J]. 中国中药杂志,2020,45(22):5412-5420.
[41]LI J, YU H W, LIU M L, et al. Transcriptome-wide identification of WRKY transcription factors and their expression profiles in response to methyl jasmonate in Platycodon grandiflorus[J]. Plant Signaling & Behavior,,2022,17(1):2089473.
[42]HAN H, WANG C N, YANG X Y, et al. Role of bZIP transcription factors in the regulation of plant secondary metabolism[J]. Planta,2023,258(1):13.
[43]LI Y L, WANG J, LI L Y, et al. Natural products of pentacyclic triterpenoids:from discovery to heterologous biosynthesis[J]. Natural Product Reports,2023,40(8):1303-1353.

相似文献/References:

[1]周恩强,周瑶,姚梦楠,等.基于全长转录组的蚕豆WRKY基因家族分析及耐盐胁迫相关候选基因挖掘[J].江苏农业学报,2024,(01):14.[doi:doi:10.3969/j.issn.1000-4440.2024.01.002]
 ZHOU En-qiang,ZHOU Yao,YAO Meng-nan,et al.Analysis of WRKY gene family based on full-length transcriptome and mining of salt stress candidate genes in Vicia faba[J].,2024,(07):14.[doi:doi:10.3969/j.issn.1000-4440.2024.01.002]

备注/Memo

备注/Memo:
收稿日期:2024-09-04基金项目:国家自然科学基金地区科学基金项目(82160718);云南省科技厅基础研究专项面上项目(202301AT070257);云南省兴滇英才支持计划青年人才专项(YNWR-QNBJ-2020-257、XDYC-QNRC-2022-0277);云南省中医药基础研究联合专项(202101AZ070001-057)作者简介:徐萍(2000-),女,云南昭通人,硕士研究生,研究方向为中药材有效成分积累机制。(E-mail)2633822198@qq.com通讯作者:陈佳,(
更新日期/Last Update: 2025-08-19