[1]龙宇,胡丽,黎标,等.红螯螯虾室内养殖不同生长阶段适宜水质的水体细菌群落结构及多样性分析[J].江苏农业学报,2025,(07):1375-1387.[doi:doi:10.3969/j.issn.1000-4440.2025.07.014]
 LONG Yu,HU Li,LI Biao,et al.Analysis of the bacterial community structure and diversity in water suitable for indoor aquaculture of Cherax quadricarinatus at different growth stages[J].,2025,(07):1375-1387.[doi:doi:10.3969/j.issn.1000-4440.2025.07.014]
点击复制

红螯螯虾室内养殖不同生长阶段适宜水质的水体细菌群落结构及多样性分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年07期
页码:
1375-1387
栏目:
畜牧兽医·水产养殖·益虫饲养
出版日期:
2025-07-31

文章信息/Info

Title:
Analysis of the bacterial community structure and diversity in water suitable for indoor aquaculture of Cherax quadricarinatus at different growth stages
作者:
龙宇1胡丽2黎标2吴亮3黄水娥4杨海君1
(1.湖南农业大学资源学院,湖南长沙410128;2.湖南中拓环境工程有限公司,湖南长沙410000;3.湖南省分析测试中心有限公司,湖南长沙410131;4.长沙排水有限责任公司,湖南长沙410000)
Author(s):
LONG Yu1HU Li2LI Biao2WU Liang3HUANG Shui’e4YANG Haijun1
(1.College of Resources, Hunan Agricultural University, Changsha 410128, China;2.Hunan Zhongtuo Environmental Engineering Co., Ltd., Changsha 410000, China;3.Hunan Analysis and Test Center Co., Ltd., Changsha 410131, China;4.Changsha Drainage Co., Ltd., Changsha 410000, China)
关键词:
红螯螯虾水质环境微生物细菌群落
Keywords:
Cherax quadricarinatuswater qualityenvironmental microbiotabacterial community
分类号:
S917.1
DOI:
doi:10.3969/j.issn.1000-4440.2025.07.014
文献标志码:
A
摘要:
为探究红螯螯虾(Cherax quadricarinatus)室内养殖不同生长阶段适宜水环境下的细菌群落特征,本研究以广东省揭阳市南区红螯螯虾室内养殖基地的虾苗(XMP)池、半成品虾(BCPC)池、成品虾(CPP)池1和成品虾(CPP)池2适宜水质的水体为研究对象,通过Illumina MiSeq高通量测序法分析了水体中细菌群落结构、多样性及其与水体理化因子的关联性。结果表明,水体中pH与水温(WT)之间显著正相关(P<0.05),总硬度(TH)与水温、pH之间为显著负相关(P<0.05)。水体中细菌群落优势菌门为变形菌门、拟杆菌门和髌骨细菌门等,优势菌属为多核杆菌属、norank_Rhizobiales_Incertae_Sedis、norank_Chloroplast和hgcl_clade等。通过皮尔逊(Pearson)相关性分析发现,细菌群落多样性与丰富度均受亚硝酸盐氮(NO-2-N)含量显著影响。在属水平上,相对丰度前20的属细菌与水体理化因子的斯皮尔曼(Spearman)相关性分析发现,水体pH、总硬度、氨态氮(NH+4-N)含量、亚硝酸盐氮含量、总氮(TN)含量和化学需氧量对细菌群落结构具有显著影响。利用Tax4Fun2进行基因功能预测,结果表明主要优势功能基因为全球与概览图、碳水化合物代谢和氨基酸代谢等。聚类分析发现相邻生长阶段的细菌群落功能基因更为相似,成品虾池水体中细菌群落功能基因也更加稳定。采用FAPROTAX注释得出,氮代谢循环功能类群的相对丰度在成品虾生长阶段明显增加。本研究结果显示,红螯螯虾室内养殖水体中的菌群结构随生长时期的推进分布更均匀,相关细菌在维持养殖水体健康中发挥了重要作用。
Abstract:
To investigate the bacterial community characteristics in water environments suitable for indoor Cherax quadricarinatus culture at different growth stages, this study focused on the water quality of the shrimp seedling (XMP) pool, semi-finished shrimp (BCPC) pool, finished shrimp (CPP) pool 1, and finished shrimp (CPP) pool 2 at a breeding base in Jieyang, Guangdong. Using Illumina MiSeq high-throughput sequencing, we analyzed the bacterial community structure, diversity, and their association with physicochemical factors in water samples. The results showed that pH was significantly positively correlated with water temperature (WT) (P<0.05), while total hardness (TH) was significantly negatively correlated with WT and pH (P<0.05). The dominant bacterial phyla in the water samples were Proteobacteria, Bacteroidota, and Patescibacteria, while dominant genera included Polynucleobacter, norank_Rhizobiales_Incertae_Sedis, norank_Chloroplast, and hgcI_clade. Pearson correlation analysis revealed that bacterial community diversity and richness were significantly influenced by nitrite-nitrogen (NO-2-N) concentration. At the genus level, Spearman correlation analysis of the top 20 genera showed that pH, TH, ammonia nitrogen (NH+4-N) concentration, NO-2-N concentration, total nitrogen (TN) concentration, and chemical oxygen demand significantly impacted the bacterial community structure. Gene function prediction using Tax4Fun indicated that the main functional pathways included global and overview maps, carbohydrate metabolism, and amino acid metabolism. Clustering analysis demonstrated that the functional genes of bacterial communities at adjacent growth stages were more similar, and the functional genes in finished shrimp pool samples were also more stable. FAPROTAX annotation revealed that the relative abundance of functional groups involved in the nitrogen-metabolism cycle significantly increased during the growth stage of finished shrimp. The research results indicate that, in indoor aquaculture of Cherax quadricarinatus, the bacterial community structure in water becomes more evenly distributed as the growth stage progresses. The relevant bacteria play a crucial role in maintaining the water quality of the aquaculture environment.

参考文献/References:

[1]张文兵,解绶启,徐皓,等. 我国水产业高质量发展战略研究[J]. 中国工程科学,2023,25(4):137-148.
[2]梁利权,郭春霞,陈小华,等. 水产养殖清塘过程污染排放特征及对周边水体影响:以太湖下游典型鱼类集约化养殖区为例[J]. 湖泊科学,2023,35(1):181-191.
[3]王广军,孙悦,郁二蒙,等. 澳洲淡水龙虾与克氏原螯虾肌肉营养成分分析与品质评价[J]. 动物营养学报,2019,31(9):4339-4348.
[4]ZHENG T M, WANG P F, HU B, et al. Mass variations and transfer process of shrimp farming pollutants in aquaculture drainage systems:effects of DOM features and physicochemical properties[J]. Journal of Hazardous Materials,2024,469:133978.
[5]CHENG S, JIA Y Y, CHI M L, et al. Culture model of Cherax quadricarinatus:temporary shelter in shed and pond culture[J]. Aquaculture,2020,526:735359.
[6]宫晗,陈萍,秦桢,等. 凡纳滨对虾工厂化循环水养殖系统水质指标及微生物菌群结构的分析[J]. 渔业科学进展,2023,44(1):125-136.
[7]刘梅,原居林,练青平,等. 池塘内循环流水养殖模式对养殖塘上覆水-沉积物-间隙水磷时空分布特征及释放通量的影响[J]. 水生生物学报,2021,45(5):1045-1056.
[8]吴小峰. 水产养殖温度调控系统智能化设计[J]. 农机化研究,2018,40(11):136-139,146.
[9]徐文倩,叶姜瑜. 复合菌剂M5对红螯螯虾(Cherax quadricarinatus)高密度养殖系统水质及其肠道微生物群落影响的初步研究[J]. 微生物学杂志,2020,40(5):58-66.
[10]蒋建明,乔增伟,朱正伟,等. 水产养殖复合式自动增氧系统设计与试验[J]. 农业机械学报,2020,51(10):278-283.
[11]MASSER M P, ROUSE D B. Australian red claw crayfish[M]. Stoneville: Southern Regional Aquaculture Center, 1997.
[12]DAUDA A B. Biofloc technology:a review on the microbial interactions,operational parameters and implications to disease and health management of cultured aquatic animals[J]. Reviews in Aquaculture,2020,12(2):1193-1210.
[13]GARCIA-GARCERA M, ROCHA E P C. Community diversity and habitat structure shape the repertoire of extracellular proteins in bacteria[J]. Nature Communications,2020,11(1):758.
[14]任丽娟,何聃,邢鹏,等. 湖泊水体细菌多样性及其生态功能研究进展[J]. 生物多样性,2013,21(4):422-433.
[15]LIU B N, ZHOU W M, WANG H, et al. Bacillus baekryungensis MS1 regulates the growth,non-specific immune parameters and gut microbiota of the sea cucumber Apostichopus japonicus[J]. Fish & Shellfish Immunology,2020,102:133-139.
[16]INFANTE-VILLAMIL S, HUERLIMANN R, JERRY D R. Microbiome diversity and dysbiosis in aquaculture[J]. Reviews in Aquaculture,2021,13(2):1077-1096.
[17]HAUBROCK P J, OFICIALDEGUI F J, ZENG Y W, et al. The redclaw crayfish:a prominent aquaculture species with invasive potential in tropical and subtropical biodiversity hotspots[J]. Reviews in Aquaculture,2021,13(3):1488-1530.
[18]RUPRECHT J E, BIRRER S C, DAFFORN K A, et al. Wastewater effluents cause microbial community shifts and change trophic status[J]. Water Research,2021,200:117206.
[19]GEPHART J A, GOLDEN C D. Environmental and nutritional double bottom lines in aquaculture[J]. One Earth,2022,5(4):324-328.
[20]CHEN Z, LI J, ZHAI Q Q, et al. Nitrogen cycling process and application in different prawn culture modes[J]. Reviews in Aquaculture,2024,16(4):1580-1602.
[21]MANOR R, SEGEV R, LEIBOVITZ M P, et al. Intensification of redclaw crayfish Cherax quadricarinatus culture[J]. Aquacultural Engineering,2002,26(4):263-276.
[22]秦保平,孙韧,王德龙,等. 引滦河道中水质偏碱的起因研究[J]. 环境科学研究,1999,12(5):38-42.
[23]徐芯渝. 澳洲淡水龙虾养殖水体的微生物调控[D]. 重庆:重庆大学,2019.
[24]PIEDRAHITA R H, SELAND A. Calculation of pH in fresh and sea water aquaculture systems[J]. Aquacultural Engineering,1995,14(4):331-346.
[25]FENG Y, LI M H, DUAN H M, et al. Microbial analysis reveals the potential colonization of pathogens in the intestine of crayfish (Procambarus clarkii) in traditional aquaculture environments[J]. Ecotoxicology and Environmental Safety,2021,224:112705.
[26]袁若男,杨慧赞,黄黎明,等. 池塘养殖红螯螯虾个体大小与肠道细菌的关系分析[J]. 西南农业学报,2021,34(12):2790-2797.
[27]LU Z B, LIN W C, LI Q, et al. Recirculating aquaculture system as microbial community and water quality management strategy in the larviculture of Scylla paramamosain[J]. Water Research,2024,252:121218.
[28]MOSCHOS S, KORMAS K A, KARAYANNI H. Prokaryotic diversity in marine and freshwater recirculating aquaculture systems[J]. Reviews in Aquaculture,2022,14(4):1861-1886.
[29]李卢国,骆云慧,徐善良. 循环水养殖黑鲷(Acanthopagrus schlegelii)水体中循环率对水质因子和细菌群落多样性的影响[J]. 海洋与湖沼,2020,51(2):318-327.
[30]YU M J, SU W Q, HUANG L B, et al. Bacterial community structure and putative nitrogen-cycling functional traits along a charosphere gradient under waterlogged conditions[J]. Soil Biology and Biochemistry,2021,162:108420.
[31]胡高宇,张翔,陈琛,等. 海水养殖尾水处理系统中微生物群落对水处理阶段的响应[J]. 水生生物学报,2021,45(1):161-171.
[32]PROPS R, DENEF V J. Temperature and nutrient levels correspond with lineage-specific microdiversification in the ubiquitous and abundant freshwater genus Limnohabitans[J]. Applied and Environmental Microbiology,2020,86(10):e00140-20.
[33]XU J J, ZHANG N, YANG G J, et al. Revealing the behavior of perfluorooctane sulfonic acid in an aerobic granular sludge system:fate and impact[J]. Chemical Engineering Journal,2023,454:140478.
[34]WANG F, CUI Q, LIU W A, et al. Synergistic denitrification mechanism of domesticated aerobic denitrifying bacteria in low-temperature municipal wastewater treatment[J]. NPJ Clean Water,2024,7:6.
[35]LAFRENTZ B R, KRLOV S, BURBICK C R, et al. The fish pathogen Flavobacterium columnare represents four distinct species:Flavobacterium columnare,Flavobacterium covae sp. nov. ,Flavobacterium davisii sp. nov. and Flavobacterium oreochromis sp. nov. ,and emended description of Flavobacterium columnare[J]. Systematic and Applied Microbiology,2022,45(2):126293.
[36]LI Z, DU Q Y, JIAO T Y, et al. Effects of probiotic supplementary bioflocs (Rhodospirillum rubrum,Bacillus subtilis,Providencia rettgeri) on growth,immunity,and water quality in cultures of Pacific white shrimp (Litopenaeus vannamei)[J]. Aquaculture,2024,591:741141.
[37]LIU Z T, WANG P D, LI J L, et al. Comparative metagenomic analysis of microbial community compositions and functions in cage aquaculture and its nearby non-aquaculture environments[J]. Frontiers in Microbiology,2024,15:1398005.
[38]WANG M, FAN Z J, WANG R N, et al. Nitrogen removal performance,and microbial community structure of water and its association with nitrogen metabolism of an ecological engineering pond aquaculture system[J]. Aquaculture Reports,2022,25:101258.
[39]许郑超,邓燕飞,周军,等. 中华绒螯蟹养殖池塘菌群结构和功能特征[J]. 生态学杂志,2021,40(7):2223-2233.
[40]杨文焕,邓子威,徐岩,等. 光合细菌对活性污泥微生物群落结构及功能的影响[J]. 中国环境科学,2024,44(3):1314-1323.
[41]王涛,刘青松,李华,等. 生物絮团技术在水产养殖水处理系统中作用与管理的研究进展[J]. 海洋湖沼通报,2019,41(1):119-125.
[42]ZHAO Q, XIE F X, ZHANG F F, et al. Analysis of bacterial community functional diversity in late-stage shrimp (Litopenaeus vannamei) ponds using Biolog EcoPlates and PICRUSt2[J]. Aquaculture,2022,546:737288.
[43]卢培利,杨涵,丁阿强,等. 碳源与氮源限制下细菌代谢调节研究进展[J]. 微生物学报,2023,63(3):946-962.
[44]陶苗苗,李亚楠,宋海涯,等.挺水植物菖蒲根区沉积物细菌群落结构和功能特征分析[J]. 环境化学,2024,43(6):1942-1953.
[45]KUYPERS M M M, MARCHANT H K, KARTAL B. The microbial nitrogen-cycling network[J]. Nature Reviews. Microbiology,2018,16(5):263-276.
[46]XIE M Q, ZHANG S Y, XU L L, et al. Comparison of the intestinal microbiota during the different growth stages of red swamp crayfish (Procambarus clarkii)[J]. Frontiers in Microbiology,2021,12:696281.
[47]EBELING J M, TIMMONS M B, BISOGNI J J. Engineering analysis of the stoichiometry of photoautotrophic,autotrophic,and heterotrophic removal of ammonia–nitrogen in aquaculture systems[J]. Aquaculture,2006,257(1/2/3/4):346-358.

相似文献/References:

[1]金晶,毛星,戴红君,等.基于分布滞后非线性模型的蟹塘水质受投喂量影响的关系分析[J].江苏农业学报,2022,38(04):994.[doi:doi:10.3969/j.issn.1000-4440.2022.04.016]
 JIN Jing,MAO Xing,DAI Hong-jun,et al.Analysis of the relationship between water quality of crab pond and feeding amount of feedstuff based on distributed lag non-linear model[J].,2022,38(07):994.[doi:doi:10.3969/j.issn.1000-4440.2022.04.016]

备注/Memo

备注/Memo:
收稿日期:2024-10-29基金项目:湖南省自然科学基金-省市联合项目(2022JJ50247);长沙市自然科学基金项目(kg2208137)作者简介:龙宇(1999-),女,湖南永州人,硕士研究生,研究方向为农业资源利用。(E-mail)285984550@qq.com通讯作者:杨海君,(E-mail)yhj@hunau.edu.cn
更新日期/Last Update: 2025-08-19