[1]林建城,陈伟豪,曾水琴,等.消毒剂对日本鳗鲡肠道N-乙酰-β-D-氨基葡萄糖苷酶活性的影响[J].江苏农业学报,2025,(07):1366-1374.[doi:doi:10.3969/j.issn.1000-4440.2025.07.013]
 LIN Jiancheng,CHEN Weihao,ZENG Shuiqin,et al.Effects of disinfectants on N-acetyl-β-D-glucosaminidase activity of Japanese eel Anguilla japonica[J].,2025,(07):1366-1374.[doi:doi:10.3969/j.issn.1000-4440.2025.07.013]
点击复制

消毒剂对日本鳗鲡肠道N-乙酰-β-D-氨基葡萄糖苷酶活性的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年07期
页码:
1366-1374
栏目:
畜牧兽医·水产养殖·益虫饲养
出版日期:
2025-07-31

文章信息/Info

Title:
Effects of disinfectants on N-acetyl-β-D-glucosaminidase activity of Japanese eel Anguilla japonica
作者:
林建城陈伟豪曾水琴林娟娟
(莆田学院环境与生物工程学院/福建省新型污染物生态毒理效应与控制重点实验室/生态环境及其信息图谱福建省高等学校重点实验室<莆田学院> ,福建莆田351100)
Author(s):
LIN JianchengCHEN WeihaoZENG ShuiqinLIN Juanjuan
(College of Environmental and Biological Engineering, Putian University/Fujian Provincial Key Laboratory of Ecology-toxicological Effects & Control for Emerging Contaminants/Key Laboratory of Ecological Environment and Information Atlas of Fujian Provincial University , Putian 351100, China)
关键词:
消毒剂日本鳗鲡N-乙酰-β-D-氨基葡萄糖苷酶抑制作用构象变化
Keywords:
disinfectantsAnguilla japonicaN-acetyl-β-D-glucosaminidaseinhibitionconformational change
分类号:
Q556+.2;S965.223
DOI:
doi:10.3969/j.issn.1000-4440.2025.07.013
文献标志码:
A
摘要:
N-乙酰-β-D-氨基葡萄糖苷酶(NAGase)是几丁质酶系主要成员之一,为了探讨消毒剂对养殖鱼体消化道几丁质酶活性的影响,从日本鳗鲡(Anguilla japonica)肠道中分离纯化获得NAGase酶制剂,利用酶促反应动力学和酶抑制作用动力学方法研究10种消毒剂[甲基蓝、高锰酸钾、硫酸铜、氧化钙、甲醛、戊二醛、乙醇、次氯酸钠、二氯异氰尿酸钠和三氯异氰尿酸(TCCA)]对日本鳗鲡NAGase活性的影响;通过对酶荧光发射光谱的测定,研究消毒剂对NAGase蛋白质空间构象的影响。结果表明,在特定质量浓度范围内,甲基蓝和硫酸铜对NAGase活性具有一定的激活作用,高锰酸钾对NAGase有较强的抑制效应,而40.0 mg/L氧化钙可使NAGase活性下降11.79个百分点;甲醛、戊二醛、乙醇、次氯酸钠、二氯异氰尿酸钠和三氯异氰尿酸等对NAGase活性均具有较强的抑制作用。甲醛对NAGase活性的抑制是可逆的,属于非竞争性抑制作用,抑制常数为1.43 mol/L;而TCCA对NAGase的抑制是不可逆的。此外,甲醛可使NAGase蛋白质内源荧光发射强度明显下降,荧光发射峰出现红移。说明甲醛可引起NAGase空间构象变化,也改变了酶中心微环境,导致酶的失活。而小于100 μmol/L浓度的TCCA对NAGase蛋白质内源荧光发射光谱没有明显影响,即TCCA对NAGase空间构象影响很小,可能是通过对酶蛋白质巯基的氧化或与蛋白质氨基的共价结合引起NAGase的不可逆失活。本研究结果证实了10种消毒剂对日本鳗鲡肠道NAGase活性具有较大的调控作用,对水体消毒剂在鱼类养殖中的科学使用具有指导意义。
Abstract:
N-acetyl-β-D-glucosidase (NAGase) is one of the main components of chitinolytic enzymes. In order to investigate the effects of disinfectants on chitinase in the digestive tract of cultured fish, NAGase was extracted from the intestinal tract of Japanese eel, Anguilla japonica. The effects of ten disinfectants including methylene blue, potassium permanganate, copper sulfate, calcium oxide, formaldehyde, glutaraldehyde, ethanol, sodium hypochlorite, sodium dichloroisocyanurate, and trichloroisocyanuric acid (TCCA) on NAGase activities were studied by using the kinetics method of enzyme-catalyzed reaction and kinetics method of enzymatic inhibition. Spatial conformation changes of the NAGase influenced by disinfectants were determined through measuring their fluorescence emission spectrum. The results showed that methlene blue and copper sulfate could activate the enzyme activity, while potassium permanganate had a strong inhibitory effect on the enzyme activity in a certain range of mass concentration. 40.0 mg/L of calcium oxide could lead to losing the enzyme activity by 11.79 percentage points, and formaldehyde, glutaraldehyde, ethanol, sodium hypochlorite, sodium dichloroisocyanurate and TCCA also had strong inhibitory effects on NAGase. The inhibitory effect of formaldehyde on NAGase was reversible and was the non-competitive type. The inhibition constant (Ki) of formaldehyde on the enzyme was determined to be 1.43 mol/L. But the endogenous inhibitory effect of TCCA on NAGase was irreversible. Moreover, the fluorescence emission intensity of the NAGase treated by formaldehyde was decreased obviously and the fluorescence emission peaks were red-shifted. The results indicated that the inactivation effects of formaldehyde on NAGase were caused by the conformational changes and the microenvironment changes in active center of enzyme. But the fluorescence emission spectrum of the NAGase treated by TCCA less than 100 μmol/L concentration had no obvious changes, indicating that TCCA had little effect on the conformation of NAGase. TCCA might oxidate the enzyme’s sulfhydryls or covalently bound to the amino groups of enzyme, leading to the irreversible inactivation on NAGase. The results suggested that ten disinfectants have great regulatory effects on the activities of NAGase in the intestines of Anguilla japonica. The result is instructive for the scientific use of water disinfectants in fish culture.

参考文献/References:

[1]WANG Y, ZOU H B, LAI J, et al. The miR-282-5p regulates larval moulting process by targeting chitinase 5 in Bombyx mori[J]. Insect Molecular Biology,2022,31(2):190-201.
[2]ZHANG B L, LI C L, LUAN Y, et al. The role of chitooligosaccharidolytic β-N-acetylglucosamindase in the molting and wing development of the silkworm Bombyx mori[J]. International Journal of Molecular Sciences,2022,23(7):3850.
[3]ROLLIN M, COULAUD R, ROCHER B, et al. N-acetyl-β-D-glucosaminidase activity in Palaemon serratus-Methodological optimisation and intrinsic variability[J]. Comparative Biochemistry and Physiology, Part A, 2021, 256: 110932.
[4]SAROSIEK B, GLOGOWSKI J, CEJKO B, et al. Inhibition of β-N-acetylglucosaminidase by acetamide affects sperm motility and fertilization success of rainbow trout (Oncorhynchus mykiss) and Siberian sturgeon (Acipenser baerii)[J]. Theriogenology, 2014, 81(5): 723-732.
[5]SAROSIEK B, DRYL K, KOWALSKI R K, et al. Optimalisation of the activation medium and effect of inhibiting activities of acid phosphatase,lactate dehydrogenase and β-N-acetylglucosaminidase on the fertilisation success of Eurasian perch (Perca fluviatilis L.)[J]. Animals,2022,12(3):307.
[6]IKEDA M, KAKIZAKI H, MATSUMIYA M. Biochemistry of fish stomach chitinase[J]. International Journal of Biological Macromolecules,2017,104:1672-1681.
[7]ABRO R, SUNDELL K, SANDBLOM E, et al. Evaluation of chitinolytic activities and membrane integrity in gut tissues of Arctic charr (Salvelinus alpinus) fed fish meal and zygomycete biomass[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2014,175:1-8.
[8]黄金凤,李波,白莹,等. 吉富罗非鱼胃肠道几丁质酶的克隆、组织分布和纯化[J]. 广东农业科学,2021,48(6):107-115.
[9]CHEN Y L, TAO Z P, ZHANG M H, et al. Identification of a chitinase from the hepatopancreas of Chinese black sleeper (Bostrychus sinensis)[J]. Acta Oceanologica Sinica,2021,40(6):50-60.
[10]PASCON G, DANISO E, CARDINALETTI G, et al. Postprandial kinetics of digestive function in rainbow trout (Oncorhynchus mykiss):genes expression,enzymatic activity and blood biochemistry as a practical tool for nutritional studies[J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2024,288:111559.
[11]陈晓佳,孙林浩,袁阳,等. 尼罗罗非鱼肝脏N-乙酰-β-D-氨基葡萄糖苷酶的分离纯化及酶学性质分析[J]. 厦门大学学报(自然科学版),2019,58(5):685-691.
[12]KONO M, MATSUI T, SHIMIZU C, et al. Purification and some properties of chitinase from the stomach of Japanese eel,Anguilla japonica[J]. Agricultural and Biological Chemistry,1990,54(4):973-978.
[13]林建城,胡建辉,吴钦端. 日本鳗鲡肠道N-乙酰-β-D-氨基葡萄糖苷酶的分离纯化及酶学性质[J]. 水生生物学报,2022,46(9):1301-1309.
[14]刘银华,何国森,钱毅,等. 5种常用消毒剂对锦鲤幼鱼的急性毒性试验[J]. 渔业研究,2019,41(1):70-74.
[15]ROLLIN M, COULAUD R, ROCHER B, et al. Effects of chemical compounds on the activity of the N-acetyl-β-D-glucosaminidase of the marine prawn,Palaemon serratus:screening in vitro[J]. Environmental Toxicology and Chemistry,2023,42(4):846-858.
[16]张伟妮,谢璐娜,黄小红. CuSO4和ZnSO4对尼罗罗非鱼N-乙酰-β-D-氨基葡萄糖苷酶的影响[J]. 水生生物学报,2015,39(6):1093-1099.
[17]张伟妮,陈晓佳,沈林松,等. 强氯精对尼罗罗非鱼精巢N-乙酰-β-D-氨基葡萄糖苷酶的失活动力学[J]. 应用与环境生物学报,2017,23(2):306-311.
[18]谢晓兰,黄乾生,魏晓倩,等. 养殖常用消毒药物对凡纳滨对虾NAGase活力的影响[J]. 水生态学杂志,2009,30(4):108-112.
[19]林建城,吴建洪,林娟娟. 有机溶剂来源污染物对中国鲎N-乙酰-β-D-氨基葡萄糖苷酶的影响[J]. 中国海洋大学学报(自然科学版),2021,51(6):42-49.
[20]ZHANG W N, BAI D P, HUANG Y F, et al. Enzymatic characterizations and activity regulations of N-acetyl-β-D-glucosaminidase from the spermary of Nile Tilapia (Oreochromis niloticus)[J]. Journal of Bioscience and Bioengineering,2014,117(2):153-157.
[21]陈清西. 酶学及其研究技术[M]. 2版. 厦门:厦门大学出版社,2015.
[22]WANG T, LONG X H, CHENG Y Z, et al. A comparison effect of copper nanoparticles versus copper sulphate on juvenile Epinephelus coioides:growth parameters,digestive enzymes,body composition,and histology as biomarkers[J]. International Journal of Genomics,2015,2015(1):783021.
[23]敖士齐,翟乾,纪鹏,等. 亚甲基蓝对罗氏沼虾组织结构、抗氧化系统及免疫能力的影响[J]. 淡水渔业,2023,53(1):49-56.
[24]陈宏惠,李文迹,黄小红,等. 醇、醛类有机物对中华绒螯蟹N-乙酰-β-D-氨基葡萄糖苷酶的影响[J]. 福建农林大学学报(自然科学版),2007,36(1):82-87.
[25]林娟娟,朱秋香,林建城. 有机溶剂对中国明对虾体壁N-乙酰-β-D-氨基葡萄糖苷酶活力的影响[J]. 福建农业学报,2015,30(12):1143-1148.
[26]ZHANG W N, BAI D P, LIN X Y, et al. Inactivation kinetics of formaldehyde on N-acetyl-β-D-glucosaminidase from Nile Tilapia (Oreochromis niloticus)[J]. Fish Physiology and Biochemistry,2014,40(2):561-569.
[27]韩庚,张翠英,朱蕾蕾. 甲醛对甲醛裂合酶结构的修饰作用研究[J]. 天津科技大学学报,2024,39(3):9-14,63.
[28]DOS SANTOS RODRIGUES F H, DELGADO G G, SANTANA DA COSTA T, et al. Applications of fluorescence spectroscopy in protein conformational changes and intermolecular contacts[J]. BBA Advances,2023,3:100091.
[29]CHAI W M, LIN M Z, SONG F J, et al. Rifampicin as a novel tyrosinase inhibitor:inhibitory activity and mechanism[J]. International Journal of Biological Macromolecules,2017,102:425-430.
[30]张健,李赫,李敬伟,等. 3种水产药物对松荷鲤的急性毒性[J]. 渔业研究,2024,46(2):162-170.

备注/Memo

备注/Memo:
收稿日期:2024-11-04基金项目:福建省自然科学基金项目(2023J011004)作者简介:林建城(1966-),男,福建莆田人,硕士,教授,主要从事生物酶学与食品生物技术研究。(E-mail) ptljc660402@sina.com
更新日期/Last Update: 2025-08-19