[1]张斌,毛宁宁,于亚明,等.PLGA桑枝多糖纳米粒预防脂多糖诱导小鼠十二指肠炎症的作用[J].江苏农业学报,2025,(07):1350-1358.[doi:doi:10.3969/j.issn.1000-4440.2025.07.011]
 ZHANG Bin,MAO Ningning,YU Yaming,et al.Preventive effects of PLGA Ramulus Mori polysaccharide nanoparticles on lipopolysaccharide-induced duodenal inflammation in mice[J].,2025,(07):1350-1358.[doi:doi:10.3969/j.issn.1000-4440.2025.07.011]
点击复制

PLGA桑枝多糖纳米粒预防脂多糖诱导小鼠十二指肠炎症的作用()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年07期
页码:
1350-1358
栏目:
畜牧兽医·水产养殖·益虫饲养
出版日期:
2025-07-31

文章信息/Info

Title:
Preventive effects of PLGA Ramulus Mori polysaccharide nanoparticles on lipopolysaccharide-induced duodenal inflammation in mice
作者:
张斌1毛宁宁2于亚明2刘朋1武彩红1陆辉1
(1.江苏农牧科技职业学院,江苏泰州225300;2.南京农业大学,江苏南京210095)
Author(s):
ZHANG Bin1MAO Ningning2YU Yaming2LIU Peng1WU Caihong1LU Hui1
(1.Jiangsu Agri-animal Husbandry Vocational College,Taizhou 225300,China;2.Nanjing Agricultural University, Nanjing 210095,China)
关键词:
PLGA桑枝多糖脂多糖(LPS)十二指肠肠炎
Keywords:
PLGARamulus Mori polysaccharidelipopolysaccharide (LPS)duodenumenteritis
分类号:
S853.74
DOI:
doi:10.3969/j.issn.1000-4440.2025.07.011
文献标志码:
A
摘要:
为探究聚乳酸-羟基乙酸桑枝多糖(PR)纳米粒对脂多糖(LPS)诱导小鼠十二指肠炎症的预防作用,本研究以60只8周龄ICR小鼠为试验材料,以生理盐水灌胃和腹腔注射为对照(CON),分别进行生理盐水灌胃+LPS腹腔注射(LPS)、地塞米松腹腔注射+LPS腹腔注射(DEX)、聚乳酸-羟基乙酸共聚物(PLGA)桑枝多糖纳米粒灌胃+LPS腹腔注射(PR)、桑枝多糖灌胃+LPS腹腔注射(RMP)、聚乳酸-羟基乙酸灌胃+LPS腹腔注射(PLGA)处理,处理6 h后,记录小鼠体重变化,并进行疾病活动指数(DAI)评分,检测血清和十二指肠中炎性因子白介素-1β(IL-1β)含量、肿瘤坏死因子-α(TNF-α)含量、总抗氧化能力(T-AOC)、超氧化物歧化酶(SOD)活性、一氧化氮(NO)含量和丙二醛(MDA)含量,观察肠形态及肠屏障变化,检测黏蛋白2(MUC2)和闭合蛋白(Occludin)mRNA相对表达水平,综合评价PR纳米粒对LPS诱导十二指肠炎症的预防作用。结果显示,与对照(CON)相比,LPS处理小鼠腹泻明显,DAI指数极显著升高,小鼠体重极显著下降;小鼠血清及十二指肠IL-1β含量、TNF-α含量和NO含量极显著升高,血清T-AOC和SOD活性极显著降低,MDA含量极显著升高;小鼠十二指肠形态结构异常,肠绒毛长度和隐窝深度降低,杯状细胞减少;小鼠十二指肠肠道MUC2和Occludin的mRNA相对表达水平极显著降低。与LPS处理相比,PR处理及RMP处理小鼠临床症状明显减轻,肠道组织结构紊乱状况显著改善,炎性细胞因子分泌量降低,血清抗氧化能力提高,肠道MUC2和Occludin mRNA相对表达水平提高,LPS诱导的十二指肠炎症状况明显缓解,且PR纳米粒处理效果优于RMP处理。总之,PLGA桑枝多糖纳米粒对LPS诱导肠炎具有较好的预防作用,可以作为抗肠炎的一种多糖类纳米粒候选药。
Abstract:
In order to investigate the preventive effect of polylactic acid-glycolic acid Ramulus Mori polysaccharide (PR) nanoparticles on lipopolysaccharide (LPS)-induced duodenal inflammation, 60 eight-week-old ICR mice were used as experimental materials, and normal saline gavage and intraperitoneal injection were used as controls (CON). The mice were treated with normal saline gavage + LPS intraperitoneal injection (LPS), dexamethasone intraperitoneal injection + LPS intraperitoneal injection (DEX), poly(lactic-co-glycolic acid) (PLGA) Ramulus Mori polysaccharide nanoparticles gavage + LPS intraperitoneal injection (PR), Ramulus Mori polysaccharide gavage + LPS intraperitoneal injection (RMP), poly (lactic-co-glycolic acid) gavage + LPS intraperitoneal injection (PLGA), respectively. After six hours of treatment, the body weight changes of mice were recorded and the disease activity index (DAI) score was performed. The levels of inflammatory factors interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), total antioxidant capacity (T-AOC), and superoxide dismutase (SOD) activity, nitric oxide (NO) content and malondialdehyde (MDA) content in serum and duodenum were detected. The changes of intestinal morphology and intestinal barrier were observed, and the mRNA relative expression levels of mucin 2 (MUC2) and occludin were detected to comprehensively evaluate the preventive effect of PR nanoparticles against LPS-induced duodenal inflammation. The results showed that compared with the control (CON), the diarrhea of LPS-treated mice were obvious, the DAI index was extremely significantly increased, and the body weight of mice was extremely significantly decreased. The contents of IL-1β, TNF-α and NO in serum and duodenum of mice increased extremely significantly, the T-AOC and SOD activity in serum decreased extremely significantly, and the content of MDA increased extremely significantly. The morphological structure of duodenum in mice was abnormal, the length of intestinal villi and the depth of crypt were decreased, and the number of goblet cells was also decreased. The relative mRNA expression levels of MUC2 and Occludin in the duodenum of mice were extremely significantly decreased. Compared with LPS treatment, the clinical symptoms of PR nanoparticle treatment and RMP treatment were significantly alleviated, the intestinal tissue structure disorder was significantly improved, the secretion of inflammatory cytokines was reduced, the antioxidant capacity of the serum was improved, the relative expression levels of intestinal MUC2 and Occludin mRNA were increased, and the duodenal inflammation induced by LPS was alleviated. The effect of PR nanoparticle treatment was better than that of RMP treatment. In conclusion, PLGA Ramulus Mori polysaccharide nanoparticles have a good preventive effect on LPS-induced enteritis and can be used as a candidate drug for anti-enteritis.

参考文献/References:

[1]王浩,景麟稀,肖金龙,等. 产耶尔森杆菌素大肠杆菌诱导小鼠十二指肠炎症的研究[J]. 中国畜牧兽医,2023,50(11):4693-4702.
[2]FAN H N, ZHU P, ZHANG J, et al. Mucosal microbiome dysbiosis associated with duodenum bulb inflammation[J]. Microbial Pathogenesis,2021,150:104711.
[3]刘颖,田旭,冯晓梦,等. 黄芪多糖对肠炎雏鸡小肠黏膜损伤的保护作用[J]. 中国畜牧兽医,2023,50(1):76-85.
[4]李慧,刘宇飞,李金龙,等. 蒲公英和板蓝根对LPS诱导的小鼠肠黏膜屏障损伤的调理机制研究[J]. 中国预防兽医学报,2023,45(8):859-863,876.
[5]DONG N, LI X R, XUE C Y, et al. Astragalus polysaccharides alleviates LPS-induced inflammation via the NF-κB/MAPK signaling pathway[J]. Journal of Cellular Physiology,2020,235(7/8):5525-5540.
[6]YU W S, CHEN H, XIANG Z H, et al. Preparation of polysaccharides from Ramulus mori,and their antioxidant,anti-inflammatory and antibacterial activities[J]. Molecules,2019,24(5):856.
[7]李秀峥,白富栋,孙启梅,等. 乳酸-乙醇酸共聚物(PLGA)制备方法研究进展[J]. 当代化工,2024,53(3):676-679,686.
[8]王晓芳,符乐,张盼盼,等. PLGA纳米粒及其在生物医学领域的应用潜力[J]. 中国畜牧兽医,2024,51(1):33-41.
[9]FENG Z A, PENG S, WU Z Y, et al. Ramulus mori polysaccharide-loaded PLGA nanoparticles and their anti-inflammatory effects in vivo[J]. International Journal of Biological Macromolecules,2021,182:2024-2036.
[10]MORELLI L, GIMONDI S, SEVIERI M, et al. Monitoring the fate of orally administered PLGA nanoformulation for local delivery of therapeutic drugs[J]. Pharmaceutics,2019,11(12):658.
[11]KAMALY N, YAMEEN B, WU J, et al. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release[J]. Chemical Reviews,2016,116(4):2602-2663.
[12]FENG Z A, JIAO L N, WU Z Y, et al. A novel nanomedicine ameliorates acute inflammatory bowel disease by regulating macrophages and T-cells[J]. Molecular Pharmaceutics,2021,18(9):3484-3495.
[13]张莉,胡卫东,杜林,等. 人参皂苷Rg1、Re对脂多糖诱导的肠道屏障损伤的保护作用[J]. 中国兽医学报,2024,44(3):527-535,557.
[14]CHEN Y J, JIANG X, XIE H Q, et al. Structural characterization and antitumor activity of a polysaccharide from Ramulus Mori[J]. Carbohydrate Polymers,2018,190:232-239.
[15]CIESIELSKA A, MATYJEK M, KWIATKOWSKA K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling[J]. Cellular and Molecular Life Sciences,2021,78(4):1233-1261.
[16]MCGARRY T, BINIECKA M, VEALE D J, et al. Hypoxia,oxidative stress and inflammation[J]. Free Radical Biology and Medicine,2018,125:15-24.
[17]VANCAMELBEKE M, VERMEIRE S. The intestinal barrier:a fundamental role in health and disease[J]. Expert Review of Gastroenterology & Hepatology,2017,11(9):821-834.
[18]余晶仪,郝小燕,龙敏,等. MUC2基因表达对益生菌调节肠屏障作用的影响[J]. 南方医科大学学报,2013,33(2):197-201.
[19]王莉芬,何伟,王懿凡. 紧密连接蛋白Occludin表达与小鼠肠屏障功能障碍和炎性出血的关系[J]. 临床和实验医学杂志,2021,20(18):1908-1912.
[20]HE Y J, LI Z, XU T, et al. Polystyrene nanoplastics deteriorate LPS-modulated duodenal permeability and inflammation in mice via ROS drived-NF-κB/NLRP3 pathway[J]. Chemosphere,2022,307:135662.

备注/Memo

备注/Memo:
收稿日期:2024-11-09基金项目:国家自然科学基金项目(31702286);2023年江苏省职业院校学生创新创业培育计划项目(GG-2023-0725);泰州市科技支撑计划(农业)项目(TN202119);江苏农牧科技职业学院农牧产业核心技术创新项目(NSF2023ZR01)作者简介:张斌(1975-),男,山西大同人,硕士,教授,研究方向为动物疾病防控。(E-mail)binzhang021@126.com通讯作者:武彩红,(E-mail)caihongwu616@aliyun.com;陆辉
更新日期/Last Update: 2025-08-19