[1]刘红,魏晓羽,马辉,等.春化对春兰开花性状和生理生化特性的影响[J].江苏农业学报,2025,(07):1289-1301.[doi:doi:10.3969/j.issn.1000-4440.2025.07.005]
 LIU Hong,WEI Xiaoyu,MA Hui,et al.Effects of vernalization on flowering traits and physiological and biochemical characteristics of Cymbidium goeringii[J].,2025,(07):1289-1301.[doi:doi:10.3969/j.issn.1000-4440.2025.07.005]
点击复制

春化对春兰开花性状和生理生化特性的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年07期
页码:
1289-1301
栏目:
遗传育种·生理生化
出版日期:
2025-07-31

文章信息/Info

Title:
Effects of vernalization on flowering traits and physiological and biochemical characteristics of Cymbidium goeringii
作者:
刘红魏晓羽马辉王悠孙叶
(江苏里下河地区农业科学研究所,江苏扬州225007)
Author(s):
LIU HongWEI XiaoyuMA HuiWANG YouSUN Ye
(Institute of Agricultural Sciences of Lixiahe Districts, Yangzhou 225007, China)
关键词:
春兰春化开花形状生理生化指标
Keywords:
Cymbidium goeringiivernalizationflowering traitsphysiological and biochemical indicators
分类号:
S353+.1
DOI:
doi:10.3969/j.issn.1000-4440.2025.07.005
文献标志码:
A
摘要:
本研究以春兰宋梅为试验材料,系统探究不同春化温度和春化时间对其开花性状和生理生化指标的影响。结果表明,与室温春化处理相比,4 ℃低温春化可显著提高春兰的开花率,4 ℃低温春化处理60 d即可使春兰开花率超过90%,且不影响其开花品质。在渗透调节系统方面,4 ℃低温春化处理90 d的春兰植株可溶性糖含量显著低于室温春化的春兰植株(P<0.05),4 ℃低温春化处理90 d的春兰植株可溶性蛋白质含量显著高于室温春化的春兰植株(P<0.05),表明4 ℃低温春化能够促进春兰植株中可溶性糖向可溶性蛋白质的转化。同时4 ℃低温春化能够促进春兰植株快速合成脯氨酸,保护细胞膜结构。在抗氧化系统方面,随着春化处理时间的延长,4 ℃低温春化处理的春兰植株丙二醛(MDA)含量整体上持续下降,而室温春化处理的春兰丙二醛(MDA)含量呈波动变化,表明4 ℃低温更有利于维持细胞膜完整性。4 ℃低温春化处理30 d的春兰叶片超氧化物歧化酶活性达到最大值,4 ℃低温春化处理60 d的春兰叶片过氧化氢酶活性达到最大值。在长期低温胁迫下,春兰植株的抗氧化酶活性与丙二醛含量保持动态平衡,使其维持细胞膜结构的完整性和细胞的稳态。在光合系统方面,随着春化处理时间的延长,4 ℃低温春化处理的春兰叶片叶绿素含量波动但总体保持稳定,表明4 ℃低温未对春兰光合能力造成不可逆损伤,春兰能够通过自身调节机制维持光合器官的结构与功能完整性。本研究结果为春兰规模化花期调控提供了理论依据。
Abstract:
The study used the Cymbidium goeringii Songmei as the experimental material to systematically investigate the effects of different vernalization temperatures and durations on flowering traits and physiological and biochemical indicators. The results showed that compared with room temperature vernalization, vernalization at 4 ℃ significantly increased the flowering rate of Cymbidium goeringii. A 60-day vernalization treatment at 4 ℃ could increase the flowering rate to over 90%, without affecting the flowering quality. In terms of osmotic regulation, the content of soluble sugar in Cymbidium goeringii plants treated with 4 ℃ vernalization for 90 days was significantly lower than that in plants treated with room temperature vernalization (P<0.05), while the content of soluble protein was significantly higher (P<0.05). This indicated that 4 ℃ vernalization promoted the conversion of soluble sugar to soluble protein in Cymbidium goeringii. At the same time, 4 ℃ vernalization also promoted the rapid synthesis of proline in Cymbidium goeringii, and protected the cell membrane structure. Regarding the antioxidant system, as the duration of vernalization treatment increased, the content of malondialdehyde (MDA) in Cymbidium goeringii plants treated with 4 ℃ vernalization continued to decline on the whole, while the MDA content in plants treated with room temperature vernalization showed fluctuating changes. This suggestd that 4 ℃ vernalization was more conducive to maintaining cell membrane integrity. The activity of superoxide dismutase in the leaves of Cymbidium goeringii treated with 4 ℃ vernalization for 30 days reached its maximum value, and the activity of catalase in the leaves of plants treated for 60 days reached its maximum value. Under long-term low-temperature stress, the activities of antioxidant enzymes and MDA content in Cymbidium goeringii maintained a dynamic balance, which helped to maintain the integrity of cell membrane structure and cellular homeostasis. In terms of the photosynthetic system, as the duration of vernalization treatment increased, the chlorophyll content in the leaves of Cymbidium goeringii treated with 4 ℃ vernalization fluctuated but remained stable overall. This indicated that 4 ℃ vernalization did not cause irreversible damage to the photosynthetic capacity of Cymbidium goeringii. Cymbidium goeringii could maintain the integrity of structure and function of its photosynthetic organs through its own regulatory mechanisms. This study provides a theoretical basis for the large-scale flowering regulation of Cymbidium goeringii.

参考文献/References:

[1]WANG H Z, WU Z X, LU J J, et al. Molecular diversity and relationships among Cymbidium goeringii cultivars based on inter-simple sequence repeat (ISSR) markers[J]. Genetica,2009,136:391-399.
[2]鲜小林,陈睿. 温度与光强对高山杜鹃催花期间花芽营养物质积累的影响[J]. 西北植物学报,2015,35(5):991-997.
[3]宋杨,窦连登,张红军. 高等植物成花诱导调控的分子和遗传机制[J]. 植物生理学报,2014,50(10):1459-1468.
[4]XI Y, PARK S R, KIM D H, et al. Transcriptome and epigenome analyses of vernalization in Arabidopsis thaliana[J]. Plant Journal,2020,103:1490-1502.
[5]LIU X F, HUANG Y, LI F, et al. Genetic diversity of 129 spring orchid (Cymbidium goeringii) cultivars and its relationship to horticultural types as assessed by EST-SSR markers[J]. Scientia Horticulturae,2014,174:178-184.
[6]YANG F X, ZHU G F, WANG Z, et al. Integrated mRNA and microRNA transcriptome variations in the multi-tepal mutant provide insights into the floral patterning of the orchid Cymbidium goeringii[J]. BMC genomics,2017,18(1):1-24.
[7]XIANG L, CHEN Y, CHEN L P, et al. B and E MADS-box genes determine the perianth formation in Cymbidium goeringii Rchb.f.[J]. Physiologia Plantarum,2018,162:353-369.
[8]赵虎,封宸,邢海,等. 春兰提前开花的栽培试验[J]. 浙江农业科学,2008(1):37-38.
[9]YANG F X, ZHU G F, WEI Y L, et al. Low-temperature-induced changes in the transcriptome reveal a major role of CgSVP genes in regulating flowering of Cymbidium goeringii[J]. BMC genomics,2019,20:53.
[10]刘晓芬,凌晓祺,向理理,等. 温度和赤霉素对春兰开花的调控[J]. 浙江农业学报,2023,35(2):355-363.
[11]陈满霞,蒋玉蓉,於金生. 小麦春化作用研究进展[J]. 江苏农业科学,2019,47(24):6-12.
[12]徐春梅,邹娅,刘自刚,等. 白菜型冬油菜萌动种子低温春化的生理生化特征[J]. 中国农业科学,2020,53:929-941.
[13]杨柳. 春化对甘蓝型油菜生理指标及其转录组影响[D]. 北京:中国农业科学院,2022.
[14]孔小平. 大白菜春化特性及其生理生化指标的研究[D]. 杨凌:西北农林科技大学,2017.
[15]陈华,郑晨华,李爱萍,等. 春化时间对蚕豆幼苗若干生理生化指标的影响[J]. 福建农业学报,2012,27(8):869-873.
[16]栗延茹. 有效低温积累对青花菜春化及花芽分化的影响[D]. 哈尔滨:东北农业大学,2017.
[17]汤绍虎,罗充. 植物生理实验教程[M]. 重庆:西南师范大学出版社,2012.
[18]LI R S F, FUKUDA K. Interactive effects of salt and alkali stresses on seed germination,germination recovery,and seedling growth of a halophyte Spartina alterniflora (Poaceae)[J]. South African Journal of Botany,2010,76:380-387.
[19]蒲媛媛. 我国北方甘蓝型冬油菜抗寒性评价及冷冻胁迫下转录组分析[D]. 兰州:甘肃农业大学,2019.
[20]权威,薛文通,赵天瑶,等. 植物对低温胁迫的响应机制研究进展[J]. 中国农业大学学报,2023,28(2):14-22.
[21]LIU X H, WANG Q, GU J H, et al. Vernalization of oriental hybrid lily ‘Sorbonne’:changes in physiology metabolic activity and molecular mechanism[J]. Molecular Biology Reports,2014,41:6619-6634.
[22]宋峥. 油菜花芽分化调节机理研究[D]. 武汉:华中农业大学,2009.
[23]刘娥娥,宗会,郭振飞,等. 干旱、盐和低温胁迫对水稻幼苗脯氨酸含量的影响[J]. 热带亚热带植物学报,2000,8(3):235-238.
[24]王若梦,董宽虎,李钰莹,等. 外源植物激素对NaCl胁迫下苦马豆苗期脯氨酸代谢的影响[J]. 草业学报,2014,23(2):189-195.
[25]杜文丽,陈中钐,许端祥,等. 低温胁迫下苦瓜叶片转录组差异基因分析及生理响应特征[J]. 核农学报,35(2):338-348.
[26]MITTLER R, VANDERAUWERA S, GOLLERY M, et al. Reactive oxygen gene network of plants[J]. Trends in Plant Science,2004,9:490-498.
[27]胡永波,雷雨田,杨永森,等. 芸苔素内酯喷施对黄瓜幼苗耐旱性的影响[J]. 江苏农业科学,2024,52(9):195-203.
[28]戚金存,刘大泉,刘泓,等. 干旱胁迫及复水对槟榔幼苗形态和生理特性的影响[J]. 江苏农业学报,2024,40(4):615-624.
[29]张赞培,谷月营,尚旭岚,等. 自然低温下23个青钱柳家系耐寒性评价[J]. 南京林业大学学报(自然科学版),2024,48(4):85-92.
[30]张帆,刘博,石玉,等. 干旱胁迫下嫁接对辣椒幼苗生长及生理特性的影响[J]. 江苏农业科学,2024,52(5):186-191.
[31]李明,颉嘉丽,石铭福,等. 外源2,4-表油菜素内酯对碱性盐胁迫下马铃薯根系生长、生理特性及土壤酶活性的影响[J]. 江苏农业学报,2024,40(3):394-402.
[32]张婷,张文杰,石梦云,等. 外源过氧化氢对草莓花芽生理生化的影响[J]. 江苏农业科学,2023,51(21):168-173.
[33]ESIM N, TIRYAKI D, KARADAGOGLU O, et al. Toxic effects of boron on growth and antioxidant system parameters of maize (Zea mays L.) roots[J]. Toxicology and Industrial Health,2013,29:800-805.
[34]QIU Z B, LI J T, ZHANG M M, et al. He-Ne laser pretreatment protects wheat seedlings against cadmium-induced oxidative stress[J]. Ecotoxicology and Environmental Safety,2013,88:135-141.
[35]闫利恒,代海芳,贺杰. 小麦春化脱春化、抗寒处理后POD活性变化的研究[J]. 中国农学通报,2014,30(9):99-104.
[36]APPENROTH K J, KRECH K, KERESZTES , et al. Effects of nickel on the chloroplasts of the duckweeds Spirodela polyrhiza and Lemna minor and their possible use in biomonitoring and phytoremediation[J]. Chemosphere,2010,78:216-223.
[37]宋家壮,李萍萍,付为国. 水分胁迫及复水对虉草生理生化特性的影响[J]. 草业学报,2021,21(2):62-69.

备注/Memo

备注/Memo:
收稿日期:2024-11-29基金项目:2024年省级农业科技创新与推广补助专项[扬农办(2024)101号];江苏省农业种质资源保护与利用平台项目(JSGB2018-1);江苏里下河地区农科所科研发展专项基金项目[SJ(22)105]作者简介:刘红(1986-),女,黑龙江伊春人,硕士,助理研究员,主要从事花卉遗传育种与产业化关键技术研究。(E-mail)liuhong_ivy@126.com通讯作者:孙叶,(E-mail)sunye9999@126.com
更新日期/Last Update: 2025-08-19