[1]王馨磊,朱思琪,田晓娜,等.紫花苜蓿RALF基因家族的全基因组鉴定及盐胁迫下表达分析[J].江苏农业学报,2025,(07):1260-1269.[doi:doi:10.3969/j.issn.1000-4440.2025.07.002]
 WANG Xinlei,ZHU Siqi,TIAN Xiaona,et al.Genome-wide identification of the RALF gene family in Medicago sativa and expression analysis under salt stress[J].,2025,(07):1260-1269.[doi:doi:10.3969/j.issn.1000-4440.2025.07.002]
点击复制

紫花苜蓿RALF基因家族的全基因组鉴定及盐胁迫下表达分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年07期
页码:
1260-1269
栏目:
遗传育种·生理生化
出版日期:
2025-07-31

文章信息/Info

Title:
Genome-wide identification of the RALF gene family in Medicago sativa and expression analysis under salt stress
作者:
王馨磊朱思琪田晓娜杨杞
(内蒙古农业大学旱寒区植物逆境适应与遗传修饰改良自治区重点实验室, 内蒙古呼和浩特010018)
Author(s):
WANG XinleiZHU SiqiTIAN XiaonaYANG Qi
(Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot 010018, China)
关键词:
紫花苜蓿RALF基因表达分析生物信息学分析盐胁迫
Keywords:
Medicago sativaRALF geneexpression analysisbioinformaticssalt stress
分类号:
S68;Q946.83+6
DOI:
doi:10.3969/j.issn.1000-4440.2025.07.002
文献标志码:
A
摘要:
快速碱化因子RALF是一类在植物生长发育及胁迫响应中发挥重要作用的小分子信号肽。为探讨盐胁迫条件下RALF基因家族中的关键基因,本研究对紫花苜蓿全基因组进行了RALF基因家族成员的鉴定,并分析了其盐胁迫响应特征。通过全基因组BLAST分析,鉴定出紫花苜蓿有9个RALF基因,编码的蛋白质氨基酸序列长度从59 aa到128 aa,等电点为5.13~5.41,均为疏水性蛋白。这些基因分布于6条染色体上,其中2对基因表现出共线性关系。系统发育分析将紫花苜蓿中9个RALF基因分为4个组,且所有基因编码的蛋白质均保留了motif1和motif2保守基序。此外,启动子分析结果显示大多数MsRALF基因具有响应植物生长发育及胁迫的顺式作用元件。盐胁迫处理7 d结果显示,MsRALF1、MsRALF2、MsRALF3的表达量呈先下降后上升的趋势,并在第7 d达到峰值;MsRALF6的表达量呈先下降后上升再下降的趋势,并在第3 d达到峰值;MsRALF4、MsRALF5、MsRALF7、MsRALF8、MsRALF9的表达量均在盐胁迫当天达峰值。本研究结果表明,紫花苜蓿中鉴定出的9个MsRALF基因可能参与了植物对盐胁迫的响应,且其表达受到盐胁迫调控。
Abstract:
Rapid alkalinization factor (RALF) is a class of small peptides that play crucial roles in plant growth, development, and stress response. To investigate key genes involved in salt stress response, we identified members of the RALF gene family in the whole genome of Medicago sativa and analyzed their response characteristics under salt stress. Through whole-genome BLAST analysis, we identified nine RALF genes in M. sativa. The encoded proteins ranged from 59 to 128 amino acids in length. Their isoelectric points clustered between 5.13 and 5.41. All exhibited hydrophobic properties. These genes were distributed across six chromosomes, with two pairs exhibiting collinearity.Phylogenetic analysis grouped these genes into four subgroups, and all members retained the conserved motif1 and motif2. Furthermore, promoter analysis revealed that most MsRALF genes contained cis-regulatory elements associated with plant growth, development, and stress response. Under salt stress, MsRALF1, MsRALF2 and MsRALF3 expression initially decreased but subsequently increased, peaking at 7 d, while MsRALF6 declined, then increased, and finally decreased, reaching maximal expression at 3 d. MsRALF4, MsRALF5, MsRALF7, MsRALF8 and MsRALF9 all peaked immediately on day 0 of salt exposure. These findings suggest that the nine MsRALF genes identified in M. sativa may be involved in the plant’s response to salt stress, with their expression being regulated by salt stress conditions.

参考文献/References:

[1]OLSSON V, JOOS L, ZHU S S, et al. Look closely,the beautiful may be small:precursor-derived peptides in plants[J]. Annual Review of Plant Biology,2019,70:153-186.
[2]MECCHIA M A, SANTOS-FERNANDEZ G, DUSS N N, et al. RALF4/19 peptides interact with LRX proteins to control pollen tube growth in Arabidopsis[J]. Science,2017,358(6370):1600-1603.
[3]COVEY P A, SUBBAIAH C C, PARSONS R L, et al. A pollen-specific RALF from tomato that regulates pollen tube elongation[J]. Plant Physiology,2010,153(2):703-715.
[4]LI L X, CHEN H H, ALOTAIBI S S, et al. RALF1 peptide triggers biphasic root growth inhibition upstream of auxin biosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America,2022,119(31):2121058119.
[5]ZHONG S, LI L, WANG Z J, et al. RALF peptide signaling controls the polytubey block in Arabidopsis[J]. Science,2022,375(6578):290-296.
[6]ATKINSON N J, LILLEY C J, URWIN P E. Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses[J]. Plant Physiology,2013,162(4):2028-2041.
[7]STEGMANN M, MONAGHAN J, SMAKOWSKA-LUZAN E, et al. The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling[J]. Science,2017,355(6322):287-289.
[8]ZHAO C Z, JIANG W, ZAYED O, et al. The LRXs-RALFs-FER module controls plant growth and salt stress responses by modulating multiple plant hormones[J]. National Science Review,2020,8(1):nwaa149.
[9]JIANG W, LI C, LI L T, et al. Genome-wide analysis of CqCrRLK1L and CqRALF gene families in Chenopodium quinoa and their roles in salt stress response[J]. Frontiers in Plant Science,2022,13:918594.
[10]LAN Z J, SONG Z H, WANG Z J, et al. Antagonistic RALF peptides control an intergeneric hybridization barrier on Brassicaceae stigmas[J]. Cell,2023,186(22):4773-4787.
[11]陈敏,李海云,吕福堂. 植物耐盐性研究进展[J]. 聊城大学学报(自然科学版),2011,24(3):47-50.
[12]徐明,蒋学乾,何飞,等. 紫花苜蓿种子产量与大小相关性状全基因组关联分析[J]. 草地学报,2024,32(8):2419-2427.
[13]巴图. 苜蓿对盐胁迫的生理响应及抗盐调控措施研究[D]. 呼和浩特:内蒙古农业大学,2016.
[14]SHEN C, DU H L, CHEN Z, et al. The chromosome-level genome sequence of the autotetraploid alfalfa and resequencing of core germplasms provide genomic resources for alfalfa research[J]. Molecular Plant,2020,13(9):1250-1261.
[15]CHEN C J, CHEN H, ZHANG Y, et al. TBtools:an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant,2020,13(8):1194-1202.
[16]WANG D P, ZHANG Y B, ZHANG Z, et al. KaKs_Calculator 2.0:a toolkit incorporating gamma-series methods and sliding window strategies[J].Genomics,Proteomics & Bioinformatics,2010,8(1):77-80.
[17]TAMURA K, STECHER G, KUMAR S. MEGA11:molecular evolutionary genetics analysis version 11[J]. Molecular Biology and Evolution,2021,38(7):3022-3027.
[18]BAILEY T L, BODEN M, BUSKE F A, et al. MEME SUITE:tools for motif discovery and searching[J]. Nucleic Acids Research,2009,37(7):202-208.
[19]GEOURJON C, DELAGE G. SOPMA:significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments[J]. Computer Applications in the Biosciences,1995,11(6):681-684.
[20]LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Ct method[J]. Methods,2001,25(4):402-408.
[21]LIU Y H, CHEN Y H, JIANG H K, et al. Genome-wide characterization of soybean RALF genes and their expression responses to Fusarium oxysporum[J]. Frontiers in Plant Science,2022,13:1006028.
[22]SUI J L, XIAO X H, YANG J H, et al. The rubber tree RALF peptide hormone and its receptor protein kinase FER implicates in rubber production[J]. Plant Science,2023,326:111510.
[23]XUE B P, LIANG Z C, LIU Y, et al. Genome-wide identification of the RALF gene family and expression pattern analysis in Zea mays L. under abiotic stresses[J]. Plants,2024,13(20):2883.
[24]ZHANG H, JING X T, CHEN Y, et al. The genome-wide analysis of RALF-like genes in strawberry (wild and cultivated) and five other plant species (Rosaceae)[J]. Genes,2020,11(2):174.
[25]JIA Y C, LI Y G. Genome-wide identification and comparative analysis of RALF gene family in legume and non-legume species[J]. International Journal of Molecular Sciences,2023,24(10):8842.
[26]MOUSSU S, BROYART C, SANTOS-FERNANDEZ G, et al. Structural basis for recognition of RALF peptides by LRX proteins during pollen tube growth[J]. Proceedings of the National Academy of Sciences of the United States of America,2020,117(13):7494-7503.
[27]梁宇尧,钟昌桦,潘若云,等. 百香果CBF基因家族鉴定与表达分析[J]. 江苏农业科学,2024, 52(10):55-61.
[28]江定,李光光,袁凡崇,等. 菜心响应高温胁迫的转录组分析与基因挖掘[J]. 南方农业学报,2024,55(3):766-783.
[29]刘芳,段盼盼,魏敏,等. 辣椒CUL家族基因的鉴定与表达分析[J]. 江苏农业学报, 2023,39(6):1275-1285.
[30]李远超,李可,王连南,等. 木薯根组织特异性启动子的克隆及鉴定[J]. 南方农业学报,2023,54(7):1925-1932.
[31]JING H W, WILKINSON E G, SAGEMAN-FURNAS K, et al. Auxin and abiotic stress responses[J]. Journal of Experimental Botany,2023,74(22):7000-7014.
[32]WANG Y, GONG X W, LIU W K, et al. Gibberellin mediates spermidine-induced salt tolerance and the expression of GT-3b in cucumber[J]. Plant Physiology and Biochemistry,2020,152:147-156.
[33]WANG Y, MOSTAFA S, ZENG W, et al. Function and mechanism of jasmonic acid in plant responses to abiotic and biotic stresses[J]. International Journal of Molecular Sciences,2021,22(16):8568.
[34]NAKASHIMA K, YAMAGUCHI-SHINOZAKI K. ABA signaling in stress-response and seed development[J]. Plant Cell Reports,2013,32(7):959-970.
[35]VISHAL B, KUMAR P P. Regulation of seed germination and abiotic stresses by gibberellins and abscisic acid[J]. Frontiers in Plant Science,2018,9:838.
[36]ZHAO H X, YAO P F, ZHAO J L, et al. A novel R2R3-MYB transcription factor FtMYB22 negatively regulates salt and drought stress through ABA-dependent pathway[J]. International Journal of Molecular Sciences,2022,23(23):14549.

相似文献/References:

[1]张中信,岳奇奇,钱申,等.外源氮添加对2种豆科牧草功能性状的影响[J].江苏农业学报,2020,(05):1197.[doi:doi:10.3969/j.issn.1000-4440.2020.05.017]
 ZHANG Zhong-xin,YUE Qi-qi,QIAN Shen,et al.Effects of exogenous nitrogen addition on functional traits of two leguminous forage plants[J].,2020,(07):1197.[doi:doi:10.3969/j.issn.1000-4440.2020.05.017]

备注/Memo

备注/Memo:
收稿日期:2024-11-27基金项目:内蒙古自然科学基金项目(2022MS03034);国家自然科学基金项目(32060066);内蒙古自治区植物逆境生理与分子生物学重点实验室能力建设项目(BR221021)作者简介:王馨磊(1999-),男,内蒙古通辽人,硕士,研究方向为植物分子生物学。(E-mail)3041706586@qq.com通讯作者:杨杞,(E-mail)atp_yangqi@imau.edu.cn
更新日期/Last Update: 2025-08-19