[1]陈剑珠,潘伯桂,杨丽雯,等.水分管理耦合改良剂施用阻控水稻镉累积的机制[J].江苏农业学报,2025,(06):1147-1158.[doi:doi:10.3969/j.issn.1000-4440.2025.06.011]
 CHEN Jianzhu,PAN Bogui,YANG Liwen,et al.Mechanisms of water management coupled with soil amendments for retarding cadmium accumulation in rice[J].,2025,(06):1147-1158.[doi:doi:10.3969/j.issn.1000-4440.2025.06.011]
点击复制

水分管理耦合改良剂施用阻控水稻镉累积的机制()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年06期
页码:
1147-1158
栏目:
耕作栽培·资源环境
出版日期:
2025-06-30

文章信息/Info

Title:
Mechanisms of water management coupled with soil amendments for retarding cadmium accumulation in rice
作者:
陈剑珠123潘伯桂1234杨丽雯123蔡一霞123蔡昆争123
(1.华南农业大学资源环境学院,广东广州510642;2.华南农业大学农业农村部华南热带农业环境重点实验室,广东广州510642;3.华南农业大学广东省生态循环农业重点实验室,广东广州510642;4.暨南大学生命科学技术学院/广东省环境污染控制与修复材料工程中心,广东广州510632)
Author(s):
CHEN Jianzhu123PAN Bogui1234YANG Liwen123CAI Yixia123CAI Kunzheng123
(1.College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China;2.Key Laboratory of Tropical Agricultural Environment in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China;3.Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China;4.College of Life Science and Technology, Jinan University/Guangdong Engineering Research Center of Environmental Pollution and Remediation Materials, Guangzhou 510632, China)
关键词:
水稻水分管理生物炭硅肥安全生产
Keywords:
cadmiumricewater managementbiocharsilicon fertilizersafe production
分类号:
X53
DOI:
doi:10.3969/j.issn.1000-4440.2025.06.011
文献标志码:
A
摘要:
镉(Cd)污染严重威胁农业生产,迫切需要有效的修复措施确保粮食安全。单一措施难以有效阻控水稻对镉的吸收和累积,故需采取多策略联合阻控。本研究通过盆栽试验,以生物炭(BC)和硅肥(Si)作为土壤改良剂,探讨其在连续淹水(CF)和干湿交替(AWD)水分管理条件下对稻田系统中镉迁移和转化的控制效果。结果表明,CF处理能提升土壤pH,促进硅转化,维持低氧化还原电位,降低土壤镉有效性,确保稻米质量安全。CF结合改良剂可有效控制镉含量,其中CF+BC处理增产效果显著。AWD处理虽能提高土壤氧化还原电位和有机质含量,却增加了土壤镉有效性,不利于阻控水稻对镉的吸收和富集。然而,AWD+Si处理能显著降低成熟期水稻各部位镉含量,减少稻米镉累积,并且水稻产量较CF处理提高。综上,水资源充足地区的长期淹水可有效降低稻米镉含量,但需注意减产风险,适时施用改良剂可提升产量;水资源紧张地区的干湿交替灌溉,建议配合改良剂施用以保障水稻安全生产。
Abstract:
Cadmium (Cd) contamination poses a severe threat to agricultural production, so effective remediation measures to ensure food security are urgently needed. Single remediation strategy is insufficient to effectively block the uptake and accumulation of Cd in rice. Therefore, a multi-strategy approach is required. In this study, pot experiments were conducted, using biochar (BC) and silicon fertilizer (Si) as soil amendments to explore their effectiveness in controlling Cd migration and transformation in paddy systems under continuous flooding (CF) and alternate wetting and drying (AWD) water management conditions. The results indicated that the CF treatment could increase soil pH and facilitate the transformation of silicon, and maintain a lower redox potential, thereby it could reduce soil Cd bioavailability and ensure the safety of rice grain quality. The combination of CF with amendments effectively controlled Cd content, and the CF+BC treatment showed a significant increase in yield. Although AWD treatment increased soil redox potential and organic matter content, it also increased soil Cd bioavailability, which was not conducive to the control of Cd uptake and accumulation in rice. However, the AWD+Si treatment significantly reduced Cd content in all parts of mature rice plants, decreased Cd accumulation in rice grains, and increased rice yield compared to the CF treatment. In summary, long-term flooding in regions with abundant water resources can effectively reduce grain Cd content, but it may carry a slight risk of yield reduction, which can be mitigated by timely application of amendments to enhance yield. In areas with limited water resources, it is recommended to apply amendments in conjunction with AWD to ensure the safe production of rice.

参考文献/References:

[1]HU Y A, CHENG H F, TAO S. The challenges and solutions for cadmium-contaminated rice in China:a critical review[J]. Environment International,2016,92:515-532.
[2]YANG N K, WANG H B, WANG H J, et al. Screening maize (Zea mays L.) varieties with low accumulation of cadmium,arsenic,and lead in edible parts but high accumulation in other parts:a field plot experiment[J]. Environmental Science and Pollution Research International,2021,28:33583-33598.
[3]LI K, CAO C L, MA Y B, et al. Identification of cadmium bioaccumulation in rice (Oryza sativa L.) by the soil-plant transfer model and species sensitivity distribution[J]. The Science of the Total Environment,2019,692:1022-1028.
[4]张妍,张磊,程红光,等. 南方某矿区土壤镉污染及作物健康风险研究[J]. 农业环境科学学报,2020,39(12):2752-2761.
[5]张英英,施志国,李彦荣,等. 施用改良剂对重度镉胁迫下甜高粱重金属吸收和转运的调控效应[J]. 西南农业学报,2021,34(9):1959-1968.
[6]周利军,武琳,林小兵,等. 土壤调理剂对镉污染稻田修复效果[J]. 环境科学,2019,40(11):5098-5106.
[7]LI Q, LI L F, DU H H, et al. Soil conditioners promote the formation of Fe-bound organic carbon and its stability[J]. Journal of Environmental Management,2024,349:119480.
[8]QIU Z, TANG J W, CHEN J H, et al. Remediation of cadmium-contaminated soil with biochar simultaneously improves biochar’s recalcitrance[J]. Environmental Pollution,2020,256:113436.
[9]CAI Y X, ZHANG S H, CAI K Z, et al. Cd accumulation,biomass and yield of rice are varied with silicon application at different growth phases under high concentration cadmium-contaminated soil[J]. Chemosphere,2020,242:125128.
[10]CANG L, XING J F, LIU C, et al. Effects of different water management strategies on the stability of cadmium and copper immobilization by biochar in rice-wheat rotation system[J]. Ecotoxicology and Environmental Safety,2020,202:110887.
[11]吴岩,杜立宇,梁成华,等. 生物炭与沸石混施对不同污染土壤镉形态转化的影响[J]. 水土保持学报,2018,32(1):286-290.
[12]CAI Y X, PAN B G, LIU B Q, et al. The Cd sequestration effects of rice roots affected by different Si management in Cd-contaminated paddy soil[J]. Science of the Total Environment,2022,849:157718.
[13]PAN B G, CAI Y X, LIU B Q, et al. Abatement of Cd in rice grain and toxic risks to human health by the split application of silicon at transplanting and jointing period[J]. Journal of Environmental Management,2022,302:114039.
[14]潘伯桂,刘丙权,蔡昆争,等. 硅素分期施用对镉污染水稻光合特性及物质积累的影响[J]. 生态学报,2022,42(14):5934-5944.
[15]潘伯桂,莫汉乾,王维,等. 硅素对水稻幼苗镉积累及抗胁迫应答的调节效应[J]. 应用生态学报,2021,32(3):1096-1104.
[16]曾秀君,程坤,黄学平,等. 石灰、腐植酸单施及复配对污染土壤铅镉生物有效性的影响[J]. 生态与农村环境学报,2020,36(1):121-128.
[17]张庆沛,李冰,王昌全,等. 秸秆还田配施无机改良剂对稻田土壤镉赋存形态及生物有效性的影响[J]. 农业环境科学学报,2016,35(12):2345-2352.
[18]CHEN L M, WU W G, HAN F X, et al. Agronomic management and rice varieties controlling Cd bioaccumulation in rice[J]. International Journal of Environmental Research and Public Health,2019,16(13):2376.
[19]王亚丹,乔冬梅,陆红飞. 水分管理对重金属污染土壤植物修复效果的影响研究综述[J]. 土壤通报,2022,53(6):1499-1505.
[20]KANNENBERG S A, ANDEREGG W R L, BARNES M L, et al. Dominant role of soil moisture in mediating carbon and water fluxes in dryland ecosystems[J]. Nature Geoscience,2024,17:38-43.
[21]ZHUANG Y H, ZHANG L, LI S S, et al. Effects and potential of water-saving irrigation for rice production in China[J]. Agricultural Water Management,2019,217:374-382.
[22]LI F, YIN H, ZHU T Q, et al. Understanding the role of manganese oxides in retaining harmful metals:insights into oxidation and adsorption mechanisms at microstructure level[J]. Eco-Environment & Health,2024,3(1):89-106.
[23]吕银斐. 不同水分管理方式对水稻镉积累的影响[D]. 贵阳:贵州大学,2015.
[24]LI X, ZHOU Y, LUO L H, et al. Effect of water management under different soil conditions on cadmium and arsenic accumulation in rice[J]. Agronomy,2023,13(10):2472.
[25]SEIDEL S J, WERISCH S, SCHTZE N, et al. Impact of irrigation on plant growth and development of white cabbage[J]. Agricultural Water Management,2017,187:99-111.
[26]GUO Y A, ZHANG S, GUSTAVE W, et al. Dynamics of cadmium and arsenic at the capillary fringe of paddy soils:a microcosm study based on high-resolution porewater analysis[J]. Soil & Environmental Health,2024,2(1):100057.
[27]HUANG X Y, FAN C W, XIE D Y, et al. Synergistic effects of water management and silicon foliar spraying on the uptake and transport efficiency of cadmium in rice (Oryza sativa L.)[J]. Plants,2023,12(6):1414.
[28]ALVARENGA P, FERNNDEZ-RODRGUEZ D, ABADES D P, et al. Combined use of olive mill waste compost and sprinkler irrigation to decrease the risk of As and Cd accumulation in rice grain[J]. Science of the Total Environment,2022,835:155488.
[29]陈海浪,罗家欣,何洋,等. 减氮配施生物炭对水稻生产力及土壤细菌群落组成的影响[J]. 农业环境科学学报,2023,42(9):1983-1994.
[30]鲍士旦. 土壤农化分析[M]. 3版. 北京:中国农业出版社,2000.
[31]肖振林,王果,黄瑞卿,等. 酸性土壤中有效态镉提取方法研究[J]. 农业环境科学学报,2008,27(2):795-800.
[32]PUEYO M, MATEU J, RIGOL A, et al. Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils[J]. Environmental Pollution,2008,152(2):330-341.
[33]ARAO T, KAWASAKI A, BABA K, et al. Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice[J]. Environmental Science & Technology,2009,43(24):9361-9367.
[34]CHAVEZ E, HE Z L, STOFFELLA P J, et al. Concentration of cadmium in cacao beans and its relationship with soil cadmium in southern Ecuador[J]. Science of the Total Environment,2015,533:205-214.
[35]ZHOU H, ZHOU X, ZENG M, et al. Effects of combined amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on contaminated paddy soil[J]. Ecotoxicology and Environmental Safety,2014,101:226-232.
[36]李园星露,叶长城,刘玉玲,等. 硅肥耦合水分管理对复合污染稻田土壤As-Cd生物有效性及稻米累积阻控[J]. 环境科学,2018,39(2):944-952.
[37]ABEGUNRIN T P, AWE G O, IDOWU D O, et al. Impact of wastewater irrigation on soil physico-chemical properties,growth and water use pattern of two indigenous vegetables in southwest Nigeria[J]. CATENA,2016,139:167-178.
[38]李奕含,周蓓蓓,任培琦,等. 水肥调控模式对滨海盐碱地水肥盐迁移及春玉米水肥利用率的影响[J]. 排灌机械工程学报,2023,41(1):80-88.
[39]罗秋红,吴俊,柏斌,等. 水稻镉吸收与转运机理的研究进展[J]. 土壤,2021,53(6):1142-1151.
[40]闫家普,丁效东,崔良,等. 不同改良剂及其组合对土壤镉形态和理化性质的影响[J]. 农业环境科学学报,2018,37(9):1842-1849.
[41]HU P J, ZHANG Y, WANG J J, et al. Mobilization of colloid- and nanoparticle-bound arsenic in contaminated paddy soils during reduction and reoxidation[J]. Environmental Science & Technology,2023,57(26):9843-9853.
[42]LI X Y, CAO Z Y, DU Y P, et al. Multi-metal contaminant mobilizations by natural colloids and nanoparticles in paddy soils during reduction and reoxidation[J]. Journal of Hazardous Materials,2024,461:132684.
[43]SEBASTIAN A, PRASAD M N V. Cadmium minimization in rice. A review[J]. Agronomy for Sustainable Development,2014,34(1):155-173.
[44]CHEN X K, JIANG S J, WU J C, et al. Three-year field experiments revealed the immobilization effect of natural aging biochar on typical heavy metals (Pb,Cu,Cd)[J]. Science of the Total Environment,2024,912:169384.
[45]张露,吴龙龙,黄晶,等. 增氧处理对稻田土壤微生物量碳、氮和酶活性的影响[J]. 中国水稻科学,2022,36(4):410-418.
[46]JING F, CHEN C, CHEN X M, et al. Effects of wheat straw derived biochar on cadmium availability in a paddy soil and its accumulation in rice[J]. Environmental Pollution,2020,257:113592.
[47]ZHANG M, SHAN S D, CHEN Y G, et al. Biochar reduces cadmium accumulation in rice grains in a tungsten mining area-field experiment:effects of biochar type and dosage,rice variety,and pollution level[J]. Environmental Geochemistry and Health,2019,41(1):43-52.
[48]RIZWAN M, ALI S, ABBAS T, et al. Residual effects of biochar on growth,photosynthesis and cadmium uptake in rice (Oryza sativa L.) under Cd stress with different water conditions[J]. Journal of Environmental Management,2018,206:676-683.
[49]WANG X X, JIANG J C, DOU F G, et al. Simultaneous mitigation of arsenic and cadmium accumulation in rice (Oryza sativa L.) seedlings by silicon oxide nanoparticles under different water management schemes[J]. Paddy and Water Environment,2021,19(4):569-584.

相似文献/References:

[1]王士磊,丁正权,黄海祥.水稻隐性早熟突变体ref早熟性的遗传分析和基因定位[J].江苏农业学报,2016,(04):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
 WANG Shi-lei,DING Zheng-quan,HUANG Hai-xiang.Inheritance and gene mapping of recessive earliness in rice (Oryza sativa L.)[J].,2016,(06):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
[2]王在满,郑乐,张明华,等.不同播种方式对直播水稻倒伏指数和根系生长的影响[J].江苏农业学报,2016,(04):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
 WANG Zai-man,ZHENG Le,ZHANG Ming-hua,et al.Effects of seeding manners on lodging index and root growth of directseeded rice[J].,2016,(06):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
[3]易能,薛延丰,石志琦,等.微囊藻毒素对水稻种子萌发和幼苗生长的胁迫作用[J].江苏农业学报,2016,(04):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
 YI Neng,XUE Yan-feng,SHI Zhi-qi,et al.Inhibitory effect of microcystins on seed germination and seedling growth of rice[J].,2016,(06):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
[4]刘凯,王爱民,严国红,等.一个水稻显性矮秆突变体的遗传特性与降株高能力[J].江苏农业学报,2016,(05):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
 LIU Kai,WANG Ai-min,YAN Guo-hong,et al.Genetic analysis and plant height reduction of a dominant dwarf mutant of rice[J].,2016,(06):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
[5]王红,杨镇,裴文琪,等.功能性微生物制剂对镉胁迫下水稻生长及生理特性的影响[J].江苏农业学报,2016,(05):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
 WANG Hong,YANG Zhen,PEI Wen-qi,et al.Growth and physiological characteristics of cadmium-stressed rice influenced by functional microorganism agent[J].,2016,(06):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
[6]孙玲,单捷,毛良君,等.基于遥感和Moran's I指数的水稻面积变化空间自相关性研究[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
 SUN Ling,SHAN Jie,MAO Liang-jun,et al.Spatial autocorrelation of changes in paddy rice area based on remote sensing and Moran’s I index[J].,2016,(06):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
[7]张晓忆,李卫国,景元书,等.多种光谱指标构建决策树的水稻种植面积提取[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
 ZHANG Xiao-yi,LI Wei-guo,JING Yuan-shu,et al.Extraction of paddy rice area by constructing the decision tree with multiple spectral indices[J].,2016,(06):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
[8]裔传灯,李玮,王德荣,等.水稻GW5基因的1212-bp Indel变异对粒形的影响[J].江苏农业学报,2016,(06):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
 YI Chuan-deng,LI Wei,WANG De-rong,et al.Effect of 1212-bp Indel variation of gene GW5 on rice grain shape[J].,2016,(06):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
[9]刘红江,陈虞雯,张岳芳,等.不同播栽方式对水稻叶片光合特性及产量的影响[J].江苏农业学报,2016,(06):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
 LIU Hong-jiang,CHEN Yu-wen,ZHANG Yue-fang,et al.Effects of planting pattern on leaf photosynthetic characteristics and yield of rice[J].,2016,(06):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
[10]郭保卫,许轲,魏海燕,等.钵苗机插水稻茎秆的抗倒伏能力[J].江苏农业学报,2016,(06):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]
 GUO Bao-wei,XU Ke,WEI Hai-yan,et al.Culm lodging resistance characteristics of bowl seedling mechanical-transplanting rice[J].,2016,(06):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]
[11]史高玲,周东美,余向阳,等.水稻和小麦累积镉和砷的机制与阻控对策[J].江苏农业学报,2021,(05):1333.[doi:doi:10.3969/j.issn.1000-4440.2021.05.032]
 SHI Gao-ling,ZHOU Dong-mei,YU Xiang-yang,et al.Mechanisms of cadmium and arsenic accumulation in rice and wheat and related mitigation strategies[J].,2021,(06):1333.[doi:doi:10.3969/j.issn.1000-4440.2021.05.032]

备注/Memo

备注/Memo:
收稿日期:2024-04-02基金项目:国家自然科学基金项目(31870420);广东省科技计划项目(2021A0505030057)作者简介:陈剑珠(1998-),女,彝族,云南临沧人,硕士研究生,主要从事环境污染及其修复研究。(E-mail)1697724645@qq.com通讯作者:蔡昆争,(E-mail)kzcai@scau.edu.cn
更新日期/Last Update: 2025-07-16