[1]周美春,周建江,王圣燕,等.等碳投入三种有机物料对稻田土壤有机碳组分和温室气体排放的影响[J].江苏农业学报,2025,(06):1124-1135.[doi:doi:10.3969/j.issn.1000-4440.2025.06.009]
 ZHOU Meichun,ZHOU Jianjiang,WANG Shengyan,et al.Effects of equal carbon input of three organic materials on paddy soil organic carbon fractions and greenhouse gas emissions[J].,2025,(06):1124-1135.[doi:doi:10.3969/j.issn.1000-4440.2025.06.009]
点击复制

等碳投入三种有机物料对稻田土壤有机碳组分和温室气体排放的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年06期
页码:
1124-1135
栏目:
耕作栽培·资源环境
出版日期:
2025-06-30

文章信息/Info

Title:
Effects of equal carbon input of three organic materials on paddy soil organic carbon fractions and greenhouse gas emissions
作者:
周美春1周建江2王圣燕1赵燕1王明玉3赵远3
(1.常州环保服务有限公司,江苏常州213164;2.江苏中吴环保产业发展有限公司,江苏常州213003;3.常州大学环境科学与工程学院,江苏常州213100)
Author(s):
ZHOU Meichun1 ZHOU Jianjiang2 WANG Shengyan1 ZHAO Yan1 WANG Mingyu3 ZHAO Yuan3
(1.Changzhou Environmental Protection Service Co., Ltd., Changzhou 213164, China; 2.Jiangsu Zhongwu Environmental Protection Industry Development Co., Ltd., Changzhou 213003, China; 3.School of Environmental Science and Engineering, Changzhou University, Changzhou 213100, China)
关键词:
有机物料水稻温室气体土壤有机碳全球增温潜势温室气体排放强度
Keywords:
organic materialsricegreenhouse gasessoil organic carbonglobal warming potentialgreenhouse gas intensity
分类号:
S19
DOI:
doi:10.3969/j.issn.1000-4440.2025.06.009
文献标志码:
A
摘要:
本研究旨在探究水稻秸秆、生物炭和有机肥3种有机物料等碳投入对稻田土壤有机碳组分和温室气体排放的影响。以单季稻种植系统为研究对象,等碳施入有机物料,结合三维荧光光谱技术,考察稻田温室气体排放、土壤有机碳含量、可溶性有机质(DOM)荧光组分以及微生物量碳的响应规律。与对照(单施氮磷钾肥)相比,有机肥处理(氮磷钾肥配施有机肥)显著提高了水稻产量。施用有机物料处理下的土壤溶解性有机碳含量均显著高于对照(P<0.05);有机肥处理降低了土壤微生物量碳含量。有机物料的投入影响了土壤DOM的组成和特性,导致土壤腐殖化水平降低,增加了可溶性微生物副产物与芳香蛋白类Ⅱ物质。3种有机物料的等碳投入对温室气体排放的影响不同,其中有机肥处理显著增加了全球增温潜势(GWP),较对照提高40.97%(P<0.05),而生物炭处理显著降低了土壤的GWP和温室气体排放强度(GHGI)(P<0.05),分别降低了29.86%和39.13%,水稻秸秆处理对GWP和GHGI无显著影响(P>0.05)。相关性分析结果表明,土壤溶解性有机碳含量与N2O累积排放量、CO2累积排放量之间呈显著负相关(P<0.05),N2O累积排放量与荧光指数和芳香蛋白类Ⅰ荧光区域积分呈显著正相关(P<0.05),相反,芳香蛋白类Ⅱ荧光区域积分和可溶性微生物副产物荧光区域积分均与N2O累积排放量呈极显著负相关(P<0.001);芳香蛋白类Ⅱ荧光区域积分与CO2累积排放量呈显著负相关(P<0.05)。综上,等碳投入有机物料改变了土壤有机碳含量及溶解性有机质组分,从而影响温室气体的排放。
Abstract:
This study aims to investigate the effects of equal carbon input of three organic materials (rice straw, biochar, and organic fertilizer) on soil organic carbon fractions and greenhouse gas emissions in paddy fields. Taking the single-season rice planting system as the research object, and applying organic materials on an equal carbon basis, this study investigated the response patterns of greenhouse gas emissions, soil organic carbon content, dissolved organic matter (DOM) fluorescence components, and microbial biomass carbon in paddy fields, with the aid of three-dimensional fluorescence spectroscopy technology. The application of organic fertilizer significantly increased the yield of rice. The application of organic materials significantly increased the soil dissolved organic carbon content compared with the control (P<0.05). However, the application of organic fertilizer reduced the soil microbial biomass carbon content. The application of organic materials affected the composition and properties of soil dissolved organic matter, resulting in a decrease in the level of humification and an increase in soluble microbial by-products and aromatic protein type Ⅱ substances. The application of the three types of organic materials had different impacts on greenhouse gas emissions. Specifically, the application of organic fertilizer significantly increased the global warming potential (GWP), which was 40.97% higher than that of the control (P<0.05). In contrast, the application of biochar significantly reduced the soil GWP and greenhouse gas intensity (GHGI) (P<0.05), with reductions of 29.86% and 39.13%, respectively. The rice straw application had no significant effect on GWP and GHGI (P>0.05). The results of the correlation analysis showed that the soil dissolved organic carbon content was significantly negatively correlated with the cumulative emissions of N2O and CO2 (P<0.05). The cumulative emissions of N2O were significantly positively correlated with the fluorescence index and the integral of the aromatic protein Ⅰ fluorescence region (P<0.05). In contrast, the integrals of the fluorescence regions for aromatic protein Ⅱ and soluble microbial by-products were both significantly negatively correlated with the cumulative emissions of N2O (P<0.001). The integral of the fluorescence region for aromatic protein Ⅱ was also significantly negatively correlated with the cumulative emissions of CO2 (P<0.05). In summary, the application of organic materials on an equal carbon basis altered the soil organic carbon content and the composition of dissolved organic matter, thereby influencing the emissions of greenhouse gases.

参考文献/References:

[1]CLARK M A, DOMINGO N G G, COLGAN K, et al. Global food system emissions could preclude achieving the 1.5° and 2 ℃ climate change targets[J]. Science,2020,370(6517):705-708.
[2]ZHANG J T, TIAN H Q, SHI H, et al. Increased greenhouse gas emissions intensity of major croplands in China:implications for food security and climate change mitigation[J]. Global Change Biology,2020,26(11):6116-6133.
[3]XU Y, LIANG L Q, WANG B R, et al. Conversion from double-season rice to ratoon rice paddy fields reduces carbon footprint and enhances net ecosystem economic benefit[J]. Science of the Total Environment,2022,813:152550.
[4]OLADELE S O, ADETUNJI A T. Agro-residue biochar and N fertilizer addition mitigates CO2-C emission and stabilized soil organic carbon pools in a rain-fed agricultural cropland[J]. International Soil and Water Conservation Research,2021,9(1):76-86.
[5]DU Y D, CUI B J, ZHANG Q, et al. Effects of manure fertilizer on crop yield and soil properties in China:a meta-analysis[J]. Catena,2020,193:104617.
[6]FARHANGI-ABRIZ S, TORABIAN S, QIN R J, et al. Biochar effects on yield of cereal and legume crops using meta-analysis[J].Science of the Total Environment,2021,775:145869.
[7]ZHOU M H, ZHU B, WANG S J, et al. Stimulation of N2O emission by manure application to agricultural soils may largely offset carbon benefits:a global meta-analysis[J]. Global Change Biology,2017,23(10):4068-4083.
[8]XUE J F, PU C, LIU S L, et al. Carbon and nitrogen footprint of double rice production in Southern China[J]. Ecological Indicators,2016,64:249-257.
[9]GREGORICH E G, GREER K J, ANDERSON D W, et al. Carbon distribution and losses:erosion and deposition effects[J]. Soil and Tillage Research,1998,47(3/4):291-302.
[10]NGUYEN-VAN-HUNG, SANDER B O, QUILTY J, et al. An assessment of irrigated rice production energy efficiency and environmental footprint with in-field and off-field rice straw management practices[J]. Scientific Reports,2019,9(1):16887.
[11]JOSEPH S, POW D, DAWSON K, et al. Biochar increases soil organic carbon,avocado yields and economic return over 4 years of cultivation[J]. Science of the Total Environment,2020,724:138153.
[12]AGUILERA E, LASSALETTA L, SANZ-COBENA A, et al. The potential of organic fertilizers and water management to reduce N2O emissions in Mediterranean climate cropping systems.A review[J]. Agriculture,Ecosystems & Environment,2013,164(4):32-52.
[13]陈思,王灿,李想,等. 不同UV-B辐射增幅对稻田土壤酶活性、活性有机碳含量及温室气体排放的影响[J]. 生态环境学报,2021,30(6):1260-1268.
[14]王瑞. 秸秆添加对土壤温室气体排放和溶解性有机碳DOC组分的影响[D]. 武汉:华中农业大学,2018.
[15]NASER H M, NAGATA O, TAMURA S, et al. Methane emissions from five paddy fields with different amounts of rice straw application in central Hokkaido, Japan [J]. Soil Science and Plant Nutrition,2007,53(1):95-101.
[16]陈丽铭,吴月颖,李财生,等. 土壤溶解性有机质分子特征对不同来源有机肥分解的响应[J]. 土壤学报,2023,60(4):1101-1112.
[17]谢军,赵亚南,陈轩敬,等. 长期不同施肥对土壤溶解性有机质含量及其结构特征的影响[J]. 光谱学与光谱分析,2018,38(7):2250-2255.
[18]高忠霞,周建斌,王祥,等. 不同培肥处理对土壤溶解性有机碳含量及特性的影响[J]. 土壤学报,2010,47(1):115-121.
[19]ZHANG A F, ZHOU X, LI M, et al. Impacts of biochar addition on soil dissolved organic matter characteristics in a wheat-maize rotation system in Loess Plateau of China[J]. Chemosphere,2017,186:986-993.
[20]DING H N, HU Q Y, CAI M L, et al. Effect of dissolved organic matter (DOM) on greenhouse gas emissions in rice varieties[J]. Agriculture,Ecosystems & Environment,2022,330:107870.
[21]BEGUM M S, BOGARD M J, BUTMAN D E, et al. Localized pollution impacts on greenhouse gas dynamics in three anthropogenically modified Asian river systems[J]. Journal of Geophysical Research: Biogeosciences,2021,126(5):1-20.
[22]BARNES R T, SMITH R L, AIKEN G R. Linkages between denitrification and dissolved organic matter quality,Boulder Creek watershed,Colorado[J]. Journal of Geophysical Research:Biogeosciences,2012,117(G1):G01014.
[23]孟祥天,蒋瑀霁,王晓玥,等. 生物质炭和秸秆长期还田对红壤团聚体和有机碳的影响[J]. 土壤,2018,50(2):326-332.
[24]鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科学技术出版社,2000.
[25]高洁,江韬,李璐璐,等. 三峡库区消落带土壤中溶解性有机质(DOM)吸收及荧光光谱特征[J]. 环境科学,2015,36(1):151-162.
[26]ZHANG A F, CHENG G, HUSSAIN Q, et al. Contrasting effects of straw and straw-derived biochar application on net global warming potential in the Loess Plateau of China[J]. Field Crops Research,2017,205:45-54.
[27]SUN T, FENG X M, LAL R, et al. Crop diversification practice faces a tradeoff between increasing productivity and reducing carbon footprints[J]. Agriculture,Ecosystems & Environment,2021,321:107614.
[28]WANG M Y, XIAO X, WEI W W, et al. Crop-soil-environment benefits of equivalent carbon input from organic amendments in rice production ecosystems[J]. Journal of Soil Science and Plant Nutrition,2024,24(1):1201-1211.
[29]曹宏杰,汪景宽. 长期不同施肥处理对黑土不同组分有机碳的影响[J]. 国土与自然资源研究,2012(3):39-41.
[30]吕美蓉,李忠佩,刘明,等. 长期不同施肥处理对红壤水稻土微生物量氮周转的影响[J]. 中国农业科学,2012,45(2):275-282.
[31]门倩,海江波,岳忠娜,等. 化肥减量对玉米田土壤酶活性及微生物量的影响[J]. 西北农林科技大学学报(自然科学版),2012,40(6):133-140.
[32]张蛟蛟,李永夫,姜培坤,等. 施肥对板栗林土壤活性碳库和温室气体排放的影响[J]. 植物营养与肥料学报,2013,19(3):745-752.
[33]郭海斌,石媛媛. 氮肥对夏玉米花粒期叶片衰老、氮素运移效率及碳氮比的影响[J]. 江苏农业科学,2023,51(22):76-86.
[34]周武,李鸣雷. 菌渣施用对中国土壤理化性质的影响:基于Meta分析[J]. 江苏农业科学,2024,52(2):205-213.
[35]吴建飞,殷梦瑶,任荣荣,等. 一氧化氮对棉花幼苗生长和碳氮代谢的影响[J]. 江苏农业科学,2023,51(10):84-91.
[36]SUI Y Y, JIAO X G, LIU X B, et al. Water-stable aggregates and their organic carbon distribution after five years of chemical fertilizer and manure treatments on eroded farmland of Chinese Mollisols[J]. Canadian Journal of Soil Science,2012,92(3):551-557.
[37]ZHAO H L, SHAR A G, LI S, et al. Effect of straw return mode on soil aggregation and aggregate carbon content in an annual maize-wheat double cropping system[J]. Soil and Tillage Research,2018,175:178-186.
[38]柴如山,徐悦,程启鹏,等. 安徽省主要作物秸秆养分资源量及还田利用潜力[J]. 中国农业科学,2021,54(1):95-109.
[39]石吕,薛亚光,韩笑,等. 不同土壤类型条件下生物炭施用量对水稻产量、品质和土壤理化性状的影响[J]. 江苏农业科学,2022,50(23):222-228.
[40]廖萍,刘磊,何宇轩,等. 施石灰和秸秆还田对双季稻产量和氮素吸收的互作效应[J]. 作物学报,2020,46(1):84-92.
[41]何振嘉,贺伟,罗林涛,等. 基于碳中和背景的耕地质量提升路径[J]. 排灌机械工程学报,2023,41(7):723-730.
[42]李圆圆,何平,茅桁. 稻田水肥管理研究进展及思考[J]. 排灌机械工程学报,2023,41(8):825-832.
[43]唐海明,李超,肖小平,等. 有机肥氮投入比例对双季稻田根际土壤微生物生物量碳、氮和微生物熵的影响[J]. 应用生态学报,2019,30(4):1335-1343.
[44]卜容燕,李敏,韩上,等. 有机无机肥配施对双季稻轮作系统产量、温室气体排放和土壤养分的综合效应[J]. 应用生态学报,2021,32(1):145-153.
[45]SHAKOOR A, SHAKOOR S, REHMAN A, et al. Effect of animal manure,crop type,climate zone,and soil attributes on greenhouse gas emissions from agricultural soils:a global meta-analysis[J]. Journal of Cleaner Production,2021,278:124019.
[46]方明,任天志,赖欣,等. 花生壳生物炭对潮土和红壤理化性质和温室气体排放的影响[J]. 农业环境科学学报,2018,37(6):1300-1310.
[47]李鹏章,王淑莹,彭永臻,等. COD/N与pH值对短程硝化反硝化过程中N2O产生的影响[J]. 中国环境科学,2014,34(8):2003-2009.
[48]杨硕欢,张保成,王丽,等. 水肥用量对玉米季土壤CO2排放的综合影响[J]. 环境科学,2016,37(12):4780-4788.
[49]IQBAL S, XU J C, KHAN S, et al. Regenerative fertilization strategies for climate-smart agriculture:consequences for greenhouse gas emissions from global drylands[J]. Journal of Cleaner Production,2023,398:136650.
[50]CHEN D M, YUAN L, LIU Y R, et al. Long-term application of manures plus chemical fertilizers sustained high rice yield and improved soil chemical and bacterial properties[J]. European Journal of Agronomy,2017,90:34-42.
[51]CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology,2003,37(24):5701-5710.
[52]LAMBERT T, BOUILLON S, DARCHAMBEAU F, et al. Effects of human land use on the terrestrial and aquatic sources of fluvial organic matter in a temperate river basin (The Meuse River,Belgium)[J]. Biogeochemistry,2017,136(2):191-211.
[53]ZHANG F Z, PENG Y Z, MIAO L, et al. A novel simultaneous partial nitrification Anammox and denitrification (SNAD) with intermittent aeration for cost-effective nitrogen removal from mature landfill leachate[J]. Chemical Engineering Journal,2017,313:619-628.
[54]AMARAL V, ORTEGA T, ROMERA-CASTILLO C, et al. Linkages between greenhouse gases (CO2,CH4,and N2O) and dissolved organic matter composition in a shallow estuary[J]. Science of the Total Environment,2021,788:147863.
[55]BAO M W, CUI H, LV Y, et al. Greenhouse gas emission during swine manure aerobic composting:insight from the dissolved organic matter associated microbial community succession[J]. Bioresource Technology,2023,373:128729.

相似文献/References:

[1]王士磊,丁正权,黄海祥.水稻隐性早熟突变体ref早熟性的遗传分析和基因定位[J].江苏农业学报,2016,(04):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
 WANG Shi-lei,DING Zheng-quan,HUANG Hai-xiang.Inheritance and gene mapping of recessive earliness in rice (Oryza sativa L.)[J].,2016,(06):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
[2]王在满,郑乐,张明华,等.不同播种方式对直播水稻倒伏指数和根系生长的影响[J].江苏农业学报,2016,(04):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
 WANG Zai-man,ZHENG Le,ZHANG Ming-hua,et al.Effects of seeding manners on lodging index and root growth of directseeded rice[J].,2016,(06):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
[3]易能,薛延丰,石志琦,等.微囊藻毒素对水稻种子萌发和幼苗生长的胁迫作用[J].江苏农业学报,2016,(04):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
 YI Neng,XUE Yan-feng,SHI Zhi-qi,et al.Inhibitory effect of microcystins on seed germination and seedling growth of rice[J].,2016,(06):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
[4]刘凯,王爱民,严国红,等.一个水稻显性矮秆突变体的遗传特性与降株高能力[J].江苏农业学报,2016,(05):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
 LIU Kai,WANG Ai-min,YAN Guo-hong,et al.Genetic analysis and plant height reduction of a dominant dwarf mutant of rice[J].,2016,(06):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
[5]王红,杨镇,裴文琪,等.功能性微生物制剂对镉胁迫下水稻生长及生理特性的影响[J].江苏农业学报,2016,(05):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
 WANG Hong,YANG Zhen,PEI Wen-qi,et al.Growth and physiological characteristics of cadmium-stressed rice influenced by functional microorganism agent[J].,2016,(06):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
[6]孙玲,单捷,毛良君,等.基于遥感和Moran's I指数的水稻面积变化空间自相关性研究[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
 SUN Ling,SHAN Jie,MAO Liang-jun,et al.Spatial autocorrelation of changes in paddy rice area based on remote sensing and Moran’s I index[J].,2016,(06):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
[7]张晓忆,李卫国,景元书,等.多种光谱指标构建决策树的水稻种植面积提取[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
 ZHANG Xiao-yi,LI Wei-guo,JING Yuan-shu,et al.Extraction of paddy rice area by constructing the decision tree with multiple spectral indices[J].,2016,(06):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
[8]裔传灯,李玮,王德荣,等.水稻GW5基因的1212-bp Indel变异对粒形的影响[J].江苏农业学报,2016,(06):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
 YI Chuan-deng,LI Wei,WANG De-rong,et al.Effect of 1212-bp Indel variation of gene GW5 on rice grain shape[J].,2016,(06):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
[9]刘红江,陈虞雯,张岳芳,等.不同播栽方式对水稻叶片光合特性及产量的影响[J].江苏农业学报,2016,(06):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
 LIU Hong-jiang,CHEN Yu-wen,ZHANG Yue-fang,et al.Effects of planting pattern on leaf photosynthetic characteristics and yield of rice[J].,2016,(06):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
[10]郭保卫,许轲,魏海燕,等.钵苗机插水稻茎秆的抗倒伏能力[J].江苏农业学报,2016,(06):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]
 GUO Bao-wei,XU Ke,WEI Hai-yan,et al.Culm lodging resistance characteristics of bowl seedling mechanical-transplanting rice[J].,2016,(06):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]

备注/Memo

备注/Memo:
收稿日期:2024-06-21基金项目:国家自然科学基金项目(42477005)作者简介:周美春(1985-),女,江西高安人,硕士,正高级工程师,主要从事土壤污染修复技术研究。(E-mail)zhoumc@czeri.com
更新日期/Last Update: 2025-07-16