参考文献/References:
[1]CLARK M A, DOMINGO N G G, COLGAN K, et al. Global food system emissions could preclude achieving the 1.5° and 2 ℃ climate change targets[J]. Science,2020,370(6517):705-708.
[2]ZHANG J T, TIAN H Q, SHI H, et al. Increased greenhouse gas emissions intensity of major croplands in China:implications for food security and climate change mitigation[J]. Global Change Biology,2020,26(11):6116-6133.
[3]XU Y, LIANG L Q, WANG B R, et al. Conversion from double-season rice to ratoon rice paddy fields reduces carbon footprint and enhances net ecosystem economic benefit[J]. Science of the Total Environment,2022,813:152550.
[4]OLADELE S O, ADETUNJI A T. Agro-residue biochar and N fertilizer addition mitigates CO2-C emission and stabilized soil organic carbon pools in a rain-fed agricultural cropland[J]. International Soil and Water Conservation Research,2021,9(1):76-86.
[5]DU Y D, CUI B J, ZHANG Q, et al. Effects of manure fertilizer on crop yield and soil properties in China:a meta-analysis[J]. Catena,2020,193:104617.
[6]FARHANGI-ABRIZ S, TORABIAN S, QIN R J, et al. Biochar effects on yield of cereal and legume crops using meta-analysis[J].Science of the Total Environment,2021,775:145869.
[7]ZHOU M H, ZHU B, WANG S J, et al. Stimulation of N2O emission by manure application to agricultural soils may largely offset carbon benefits:a global meta-analysis[J]. Global Change Biology,2017,23(10):4068-4083.
[8]XUE J F, PU C, LIU S L, et al. Carbon and nitrogen footprint of double rice production in Southern China[J]. Ecological Indicators,2016,64:249-257.
[9]GREGORICH E G, GREER K J, ANDERSON D W, et al. Carbon distribution and losses:erosion and deposition effects[J]. Soil and Tillage Research,1998,47(3/4):291-302.
[10]NGUYEN-VAN-HUNG, SANDER B O, QUILTY J, et al. An assessment of irrigated rice production energy efficiency and environmental footprint with in-field and off-field rice straw management practices[J]. Scientific Reports,2019,9(1):16887.
[11]JOSEPH S, POW D, DAWSON K, et al. Biochar increases soil organic carbon,avocado yields and economic return over 4 years of cultivation[J]. Science of the Total Environment,2020,724:138153.
[12]AGUILERA E, LASSALETTA L, SANZ-COBENA A, et al. The potential of organic fertilizers and water management to reduce N2O emissions in Mediterranean climate cropping systems.A review[J]. Agriculture,Ecosystems & Environment,2013,164(4):32-52.
[13]陈思,王灿,李想,等. 不同UV-B辐射增幅对稻田土壤酶活性、活性有机碳含量及温室气体排放的影响[J]. 生态环境学报,2021,30(6):1260-1268.
[14]王瑞. 秸秆添加对土壤温室气体排放和溶解性有机碳DOC组分的影响[D]. 武汉:华中农业大学,2018.
[15]NASER H M, NAGATA O, TAMURA S, et al. Methane emissions from five paddy fields with different amounts of rice straw application in central Hokkaido, Japan [J]. Soil Science and Plant Nutrition,2007,53(1):95-101.
[16]陈丽铭,吴月颖,李财生,等. 土壤溶解性有机质分子特征对不同来源有机肥分解的响应[J]. 土壤学报,2023,60(4):1101-1112.
[17]谢军,赵亚南,陈轩敬,等. 长期不同施肥对土壤溶解性有机质含量及其结构特征的影响[J]. 光谱学与光谱分析,2018,38(7):2250-2255.
[18]高忠霞,周建斌,王祥,等. 不同培肥处理对土壤溶解性有机碳含量及特性的影响[J]. 土壤学报,2010,47(1):115-121.
[19]ZHANG A F, ZHOU X, LI M, et al. Impacts of biochar addition on soil dissolved organic matter characteristics in a wheat-maize rotation system in Loess Plateau of China[J]. Chemosphere,2017,186:986-993.
[20]DING H N, HU Q Y, CAI M L, et al. Effect of dissolved organic matter (DOM) on greenhouse gas emissions in rice varieties[J]. Agriculture,Ecosystems & Environment,2022,330:107870.
[21]BEGUM M S, BOGARD M J, BUTMAN D E, et al. Localized pollution impacts on greenhouse gas dynamics in three anthropogenically modified Asian river systems[J]. Journal of Geophysical Research: Biogeosciences,2021,126(5):1-20.
[22]BARNES R T, SMITH R L, AIKEN G R. Linkages between denitrification and dissolved organic matter quality,Boulder Creek watershed,Colorado[J]. Journal of Geophysical Research:Biogeosciences,2012,117(G1):G01014.
[23]孟祥天,蒋瑀霁,王晓玥,等. 生物质炭和秸秆长期还田对红壤团聚体和有机碳的影响[J]. 土壤,2018,50(2):326-332.
[24]鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科学技术出版社,2000.
[25]高洁,江韬,李璐璐,等. 三峡库区消落带土壤中溶解性有机质(DOM)吸收及荧光光谱特征[J]. 环境科学,2015,36(1):151-162.
[26]ZHANG A F, CHENG G, HUSSAIN Q, et al. Contrasting effects of straw and straw-derived biochar application on net global warming potential in the Loess Plateau of China[J]. Field Crops Research,2017,205:45-54.
[27]SUN T, FENG X M, LAL R, et al. Crop diversification practice faces a tradeoff between increasing productivity and reducing carbon footprints[J]. Agriculture,Ecosystems & Environment,2021,321:107614.
[28]WANG M Y, XIAO X, WEI W W, et al. Crop-soil-environment benefits of equivalent carbon input from organic amendments in rice production ecosystems[J]. Journal of Soil Science and Plant Nutrition,2024,24(1):1201-1211.
[29]曹宏杰,汪景宽. 长期不同施肥处理对黑土不同组分有机碳的影响[J]. 国土与自然资源研究,2012(3):39-41.
[30]吕美蓉,李忠佩,刘明,等. 长期不同施肥处理对红壤水稻土微生物量氮周转的影响[J]. 中国农业科学,2012,45(2):275-282.
[31]门倩,海江波,岳忠娜,等. 化肥减量对玉米田土壤酶活性及微生物量的影响[J]. 西北农林科技大学学报(自然科学版),2012,40(6):133-140.
[32]张蛟蛟,李永夫,姜培坤,等. 施肥对板栗林土壤活性碳库和温室气体排放的影响[J]. 植物营养与肥料学报,2013,19(3):745-752.
[33]郭海斌,石媛媛. 氮肥对夏玉米花粒期叶片衰老、氮素运移效率及碳氮比的影响[J]. 江苏农业科学,2023,51(22):76-86.
[34]周武,李鸣雷. 菌渣施用对中国土壤理化性质的影响:基于Meta分析[J]. 江苏农业科学,2024,52(2):205-213.
[35]吴建飞,殷梦瑶,任荣荣,等. 一氧化氮对棉花幼苗生长和碳氮代谢的影响[J]. 江苏农业科学,2023,51(10):84-91.
[36]SUI Y Y, JIAO X G, LIU X B, et al. Water-stable aggregates and their organic carbon distribution after five years of chemical fertilizer and manure treatments on eroded farmland of Chinese Mollisols[J]. Canadian Journal of Soil Science,2012,92(3):551-557.
[37]ZHAO H L, SHAR A G, LI S, et al. Effect of straw return mode on soil aggregation and aggregate carbon content in an annual maize-wheat double cropping system[J]. Soil and Tillage Research,2018,175:178-186.
[38]柴如山,徐悦,程启鹏,等. 安徽省主要作物秸秆养分资源量及还田利用潜力[J]. 中国农业科学,2021,54(1):95-109.
[39]石吕,薛亚光,韩笑,等. 不同土壤类型条件下生物炭施用量对水稻产量、品质和土壤理化性状的影响[J]. 江苏农业科学,2022,50(23):222-228.
[40]廖萍,刘磊,何宇轩,等. 施石灰和秸秆还田对双季稻产量和氮素吸收的互作效应[J]. 作物学报,2020,46(1):84-92.
[41]何振嘉,贺伟,罗林涛,等. 基于碳中和背景的耕地质量提升路径[J]. 排灌机械工程学报,2023,41(7):723-730.
[42]李圆圆,何平,茅桁. 稻田水肥管理研究进展及思考[J]. 排灌机械工程学报,2023,41(8):825-832.
[43]唐海明,李超,肖小平,等. 有机肥氮投入比例对双季稻田根际土壤微生物生物量碳、氮和微生物熵的影响[J]. 应用生态学报,2019,30(4):1335-1343.
[44]卜容燕,李敏,韩上,等. 有机无机肥配施对双季稻轮作系统产量、温室气体排放和土壤养分的综合效应[J]. 应用生态学报,2021,32(1):145-153.
[45]SHAKOOR A, SHAKOOR S, REHMAN A, et al. Effect of animal manure,crop type,climate zone,and soil attributes on greenhouse gas emissions from agricultural soils:a global meta-analysis[J]. Journal of Cleaner Production,2021,278:124019.
[46]方明,任天志,赖欣,等. 花生壳生物炭对潮土和红壤理化性质和温室气体排放的影响[J]. 农业环境科学学报,2018,37(6):1300-1310.
[47]李鹏章,王淑莹,彭永臻,等. COD/N与pH值对短程硝化反硝化过程中N2O产生的影响[J]. 中国环境科学,2014,34(8):2003-2009.
[48]杨硕欢,张保成,王丽,等. 水肥用量对玉米季土壤CO2排放的综合影响[J]. 环境科学,2016,37(12):4780-4788.
[49]IQBAL S, XU J C, KHAN S, et al. Regenerative fertilization strategies for climate-smart agriculture:consequences for greenhouse gas emissions from global drylands[J]. Journal of Cleaner Production,2023,398:136650.
[50]CHEN D M, YUAN L, LIU Y R, et al. Long-term application of manures plus chemical fertilizers sustained high rice yield and improved soil chemical and bacterial properties[J]. European Journal of Agronomy,2017,90:34-42.
[51]CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology,2003,37(24):5701-5710.
[52]LAMBERT T, BOUILLON S, DARCHAMBEAU F, et al. Effects of human land use on the terrestrial and aquatic sources of fluvial organic matter in a temperate river basin (The Meuse River,Belgium)[J]. Biogeochemistry,2017,136(2):191-211.
[53]ZHANG F Z, PENG Y Z, MIAO L, et al. A novel simultaneous partial nitrification Anammox and denitrification (SNAD) with intermittent aeration for cost-effective nitrogen removal from mature landfill leachate[J]. Chemical Engineering Journal,2017,313:619-628.
[54]AMARAL V, ORTEGA T, ROMERA-CASTILLO C, et al. Linkages between greenhouse gases (CO2,CH4,and N2O) and dissolved organic matter composition in a shallow estuary[J]. Science of the Total Environment,2021,788:147863.
[55]BAO M W, CUI H, LV Y, et al. Greenhouse gas emission during swine manure aerobic composting:insight from the dissolved organic matter associated microbial community succession[J]. Bioresource Technology,2023,373:128729.
相似文献/References:
[1]王士磊,丁正权,黄海祥.水稻隐性早熟突变体ref早熟性的遗传分析和基因定位[J].江苏农业学报,2016,(04):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
WANG Shi-lei,DING Zheng-quan,HUANG Hai-xiang.Inheritance and gene mapping of recessive earliness in rice (Oryza sativa L.)[J].,2016,(06):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
[2]王在满,郑乐,张明华,等.不同播种方式对直播水稻倒伏指数和根系生长的影响[J].江苏农业学报,2016,(04):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
WANG Zai-man,ZHENG Le,ZHANG Ming-hua,et al.Effects of seeding manners on lodging index and root growth of directseeded rice[J].,2016,(06):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
[3]易能,薛延丰,石志琦,等.微囊藻毒素对水稻种子萌发和幼苗生长的胁迫作用[J].江苏农业学报,2016,(04):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
YI Neng,XUE Yan-feng,SHI Zhi-qi,et al.Inhibitory effect of microcystins on seed germination and seedling growth of rice[J].,2016,(06):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
[4]刘凯,王爱民,严国红,等.一个水稻显性矮秆突变体的遗传特性与降株高能力[J].江苏农业学报,2016,(05):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
LIU Kai,WANG Ai-min,YAN Guo-hong,et al.Genetic analysis and plant height reduction of a dominant dwarf mutant of rice[J].,2016,(06):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
[5]王红,杨镇,裴文琪,等.功能性微生物制剂对镉胁迫下水稻生长及生理特性的影响[J].江苏农业学报,2016,(05):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
WANG Hong,YANG Zhen,PEI Wen-qi,et al.Growth and physiological characteristics of cadmium-stressed rice influenced by functional microorganism agent[J].,2016,(06):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
[6]孙玲,单捷,毛良君,等.基于遥感和Moran's I指数的水稻面积变化空间自相关性研究[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
SUN Ling,SHAN Jie,MAO Liang-jun,et al.Spatial autocorrelation of changes in paddy rice area based on remote sensing and Moran’s I index[J].,2016,(06):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
[7]张晓忆,李卫国,景元书,等.多种光谱指标构建决策树的水稻种植面积提取[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
ZHANG Xiao-yi,LI Wei-guo,JING Yuan-shu,et al.Extraction of paddy rice area by constructing the decision tree with multiple spectral indices[J].,2016,(06):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
[8]裔传灯,李玮,王德荣,等.水稻GW5基因的1212-bp Indel变异对粒形的影响[J].江苏农业学报,2016,(06):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
YI Chuan-deng,LI Wei,WANG De-rong,et al.Effect of 1212-bp Indel variation of gene GW5 on rice grain shape[J].,2016,(06):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
[9]刘红江,陈虞雯,张岳芳,等.不同播栽方式对水稻叶片光合特性及产量的影响[J].江苏农业学报,2016,(06):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
LIU Hong-jiang,CHEN Yu-wen,ZHANG Yue-fang,et al.Effects of planting pattern on leaf photosynthetic characteristics and yield of rice[J].,2016,(06):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
[10]郭保卫,许轲,魏海燕,等.钵苗机插水稻茎秆的抗倒伏能力[J].江苏农业学报,2016,(06):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]
GUO Bao-wei,XU Ke,WEI Hai-yan,et al.Culm lodging resistance characteristics of bowl seedling mechanical-transplanting rice[J].,2016,(06):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]