[1]张承康,黄欣,李希荣,等.百香果果生炭疽菌小GTP酶基因Rab7的鉴定与功能分析[J].江苏农业学报,2025,(06):1107-1115.[doi:doi:10.3969/j.issn.1000-4440.2025.06.007]
 ZHANG Chengkang,HUANG Xin,LI Xirong,et al.Identification and functional analysis of the small GTPase gene Rab7 in Colletotrichum fructicola of Passiflora edulis[J].,2025,(06):1107-1115.[doi:doi:10.3969/j.issn.1000-4440.2025.06.007]
点击复制

百香果果生炭疽菌小GTP酶基因Rab7的鉴定与功能分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年06期
页码:
1107-1115
栏目:
植物保护
出版日期:
2025-06-30

文章信息/Info

Title:
Identification and functional analysis of the small GTPase gene Rab7 in Colletotrichum fructicola of Passiflora edulis
作者:
张承康12黄欣12李希荣1郭彦超1郭田龙12陈美霞1
(1.宁德师范学院生物科学与工程学院省级产学研合作示范基地,福建宁德352100;2.福建农林大学生物农药与化学生物学教育部重点实验室,福建福州350002)
Author(s):
ZHANG Chengkang12HUANG Xin12LI Xirong1GUO Yanchao1GUO Tianlong12CHEN Meixia12
(1.Provincial Demonstration Base for Industry-University-Research Cooperation, College of Biological Science and Engineering, Ningde Normal University, Ningde 352100, China;2.Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China)
关键词:
百香果果生炭疽菌小GTP酶基因Rab7致病性
Keywords:
Passiflora edulisColletotrichum fructicolasmall GTPase gene Rab7pathogenicity
分类号:
S436.639
DOI:
doi:10.3969/j.issn.1000-4440.2025.06.007
文献标志码:
A
摘要:
由果生炭疽菌(Colletotrichum fructicola)引起的百香果炭疽病是影响百香果(Passiflora edulis)产量和品质的重要病害,解析果生炭疽菌致病分子机制对病害防控具有重要意义。本研究鉴定得到百香果果生炭疽菌小GTP酶Rab7,并将其与多种真菌的Rab7蛋白氨基酸序列进行比对。系统发育分析结果表明,果生炭疽菌Rab7蛋白与酿酒酵母(Saccharomyces cerevisiae)Rab7蛋白的亲缘关系最远,而与胶孢炭疽菌(Colletotrichum gloeosporioides)、禾谷炭疽菌(Colletotrichum graminicola)Rab7蛋白的亲缘关系较近。利用同源重组技术构建Rab7基因敲除菌株△Rab7及Rab7基因回补菌株△Rab7/Rab7。表性分析发现,与野生型和△Rab7/Rab7相比,△Rab7在PDAY和MM培养基中的菌落直径显著下降,黑色素积累量显著增加,分生孢子产量显著减少。但△Rab7与野生型N425对H2O2胁迫的敏感性无显著差异。激光共聚焦显微镜观察发现Rab7-GFP融合蛋白定位于液泡膜,且△Rab7液泡呈现碎片化分布,表明Rab7基因通过调控果生炭疽菌液泡融合维持其正常液泡形态。本研究结果为解析果生炭疽菌的致病分子机制提供理论依据。
Abstract:
Anthracnose of Passiflora edulis caused by Colletotrichum fructicola is a significant disease affecting the yield and quality of passion fruit. Elucidating the pathogenic molecular mechanisms of Colletotrichum fructicola is of great significance for disease control. In this study, we identified the small GTPase Rab7 from C. fructicola and compared its amino acid sequences with those of Rab7 proteins from various fungi. Phylogenetic analysis revealed that the Rab7 protein of C. fructicola had the most distant relationship with the Rab7 protein of Saccharomyces cerevisiae, while it was closely related to the Rab7 proteins of Colletotrichum gloeosporioides and Colletotrichum graminicola. Using homologous recombination technology, we constructed the Rab7 gene knockout strain △Rab7 and the complemented strain △Rab7/Rab7. Phenotypic analysis showed that compared with the wild type and △Rab7/Rab7, the △Rab7 mutant exhibited significantly reduced colony diameter on PDAY and MM media, significantly increased melanin accumulation, and significantly decreased conidial production. However, △Rab7 and the wild type N425 did not show significant differences in sensitivity to H2O2 stress. Confocal laser scanning microscopy observations indicated that the Rab7-GFP fusion protein was localized to the vacuolar membrane, and the vacuoles in △Rab7 appeared fragmented, suggesting that Rab7 gene maintained normal vacuolar morphology in C. fructicola by regulating vacuolar fusion. This study provides a theoretical basis for elucidating the molecular mechanisms of pathogenicity in C. fructicola.

参考文献/References:

[1]VIGAN J, COUTINHO J P, SOUZA D S, et al. Exploring the selectivity of supercritical CO2 to obtain nonpolar fractions of passion fruit bagasse extracts[J]. Journal of Supercritical Fluids,2016,110:1-10.
[2]袁启凤,严佳文,王红林,等. 百香果品种‘紫香1号’果实糖,酸和维生素成分分析[J]. 中国果树,2019(4):43-47.
[3]许海棠,廖华珍,张金彦,等. 百香果叶提取物的体外抗氧化活性和抑制α-葡萄糖苷酶的作用[J]. 食品科技,2019,44(7):256-261.
[4]LI W Z, RAN F, LONG Y H, et al. Evidences of Colletotrichum fructicola causing anthracnose on Passiflora edulis sims in China[J]. Pathogens,2022,11(1):6.
[5]ZHANG C K, ZHOU Z W, GUO T L, et al. CFHTF2 is needed for vegetative growth,conidial morphogenesis and the osmotic stress response in the tea plant anthracnose (Colletotrichum fructicola)[J]. Genes,2023,14(12):2235.
[6]GAO Y L, ZHANG S P, SHENG S, et al. A Colletotrichum fructicola dual specificity phosphatase CfMsg5 is regulated by the CfAp1 transcription factor during oxidative stress and promotes virulence on Camellia oleifera[J]. Virulence,2024,15(1):2413851.
[7]GUO S F, ZHANG S P. The cysteine protease CfAtg4 interacts with CfAtg8 to govern the growth,autophagy and pathogenicity of Colletotrichum fructicola[J]. Journal of Fungi,2024,10(6):431.
[8]HUOTARI J, HELENIUS A. Endosome maturation[J]. EMBO Journal,2011,30(17):3481-3500.
[9]ZHENG H W, ZHENG W H, WU C X, et al. Rab GTPases are essential for membrane trafficking-dependent growth and pathogenicity in Fusarium graminearum[J]. Environmental Microbiology,2015,17(11):4580-4599.
[10]LIU X H, CHEN S M, GAO H M, et al. The small GTPase MoYpt7 is required for membrane fusion in autophagy and pathogenicity of Magnaporthe oryzae[J]. Environmental Microbiology,2015,17(11):4495-4510.
[11]ABENZA J F, GALINDO A, PINAR M, et al. Endosomal maturation by Rab conversion in Aspergillus nidulans is coupled to dynein-mediated basipetal movement[J]. Molecular Biology of the Cell,2012,23(10):1889-1901.
[12]CHEN X, SELVARAJ P, LIN L L, et al. Rab7/Retromer-based endolysosomal trafficking is essential for proper host invasion in rice blast[J]. New Phytologist,2023,239(4):1384-1403.
[13]张承康,周子文,郭田龙,等. 茶树炭疽菌N425全基因组测序与基因功能注释[J]. 福建农业学报,2023,38(12):1437-1444.
[14]XIA Y M, CHEN F S, DU Y, et al. A modified SDS-based DNA extraction method from raw soybean[J]. Bioscience Reports,2019,39(2):1-10.
[15]彭成彬,陈美霞,魏日凤,等. 茶树炭疽菌分离鉴定与遗传转化体系建立[[J]. 西南农业学报,2021,34(10):2167-2173.
[16]HOU Z M, XUE C Y, PENG Y L, et al. A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation,and plant infection[J]. Molecular Plant-Microbe Interaction,2002,15(11):1119-1127.
[17]SCHIMMLLER F, RIEZMAN H. Involvement of Ypt7p, a small GTPase, in traffic from late endosome to the vacuole in yeast[J]. Journal of Cell Science,1993,106:823-830.
[18]HAAS A, SCHEGLMANN D, LAZAR T, et al. The GTPase Ypt7p of Saccharomyces cerevisiae is required on both partner vacuoles for the homotypic fusion step of vacuole inheritance[J]. EMBO Journal,1995,14(21):5258-5270.
[19]ABENZA J F, GALINDO A, PINAR M, et al. Endosomal maturation by Rab conversion in Aspergillus nidulans is coupled to dynein-mediated basipetal movement[J]. Molecular Biology of the Cell,2012,23(10):1889-1901.
[20]张小龙,吴淇,田润泽,等. 苹果树腐烂病菌小G蛋白VmRab7基因的功能分析[J]. 西北林学院学报,2021,36(2):158-163.
[21]张燕,徐延平,邱佳佳,等. 多黏类芽孢杆菌NX6对感染炭疽病西瓜幼苗抗氧化酶的影响[J]. 江苏农业科学,2024,52(18):147-154.
[22]何建杨,吴鑫雨,周懂,等. 间作调控小麦抗氧化酶活性及丙二醛含量降低小麦白粉病发生率[J]. 江苏农业科学,2023,51(11):113-119.
[23]GU X Y, CAO Z Y, LI Z Q, et al. Plant immunity suppression by an β-1,3-glucanase of the maize anthracnose pathogen Colletotrichum graminicola[J]. BMC Plant Biology,2024,24(1):339.
[24]ZHANG S P, GUO Y, CHEN S Q, et al. The histone acetyltransferase CfGcn5 regulates growth, development, and pathogenicity in the anthracnose fungus Colletotrichum fructicola on the tea-oil tree[J]. Frontiers in Microbiology,2021,12:680415.
[25]LI X Y, ZHANG S P, LI H. Retromer subunit, CfVps35 is required for growth development and pathogenicity of Colletotrichum fructicola[J]. BMC Genomic Data,2022,23(1):68.
[26]GUO Y, CHEN Z H, LI H, et al. The CfSnt2-dependent deacetylation of histone H3 mediates autophagy and pathogenicity of Colletotrichum fructicola[J]. Journal of Fungi,2022,8(9):974.
[27]GAN R C, ZHANG S P, LI H. Cell wall integrity mediated by CfCHS1 is important for growth, stress responses and pathogenicity in Colletotrichum fructicola[J]. Journal of Fungi,2023,9(6):643.

相似文献/References:

[1]任锐,张涵,江文洁,等.百香果SPL转录因子家族成员鉴定及其对低温胁迫的响应[J].江苏农业学报,2024,(07):1320.[doi:doi:10.3969/j.issn.1000-4440.2024.07.019]
 REN Rui,ZHANG Han,JIANG Wenjie,et al.Identification of SPL transcription factor gene family members and their response to cold stress in passion fruit[J].,2024,(06):1320.[doi:doi:10.3969/j.issn.1000-4440.2024.07.019]

备注/Memo

备注/Memo:
收稿日期:2024-11-06基金项目:福建省自然科学基金项目(2021J05254);宁德师范学院创新团队项目(2022T01)作者简介:张承康(1988-),男,福建宁德人,博士,副教授,主要从事植物病原菌致病分子机理的研究。(E-mail)shin_ichi@126.com通讯作者:陈美霞,(E-mail)cmx_101019@163.com
更新日期/Last Update: 2025-07-16