[1]刘丹,孟庆立,师亚琴,等.甘蓝型油菜OSCA家族基因鉴定及其在非生物胁迫下的表达分析[J].江苏农业学报,2025,(06):1050-1062.[doi:doi:10.3969/j.issn.1000-4440.2025.06.002]
 LIU Dan,MENG Qingli,SHI Yaqin,et al.Identification of the OSCA family genes and expression analysis under abiotic stress in Brassica napus[J].,2025,(06):1050-1062.[doi:doi:10.3969/j.issn.1000-4440.2025.06.002]
点击复制

甘蓝型油菜OSCA家族基因鉴定及其在非生物胁迫下的表达分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年06期
页码:
1050-1062
栏目:
遗传育种·生理生化
出版日期:
2025-06-30

文章信息/Info

Title:
Identification of the OSCA family genes and expression analysis under abiotic stress in Brassica napus
作者:
刘丹12孟庆立1师亚琴1杨少伟1刘娟娟1范春燕1危文亮2
(1.宝鸡市农业科学研究院,陕西宝鸡722499;2.长江大学农学院,湖北荆州434000)
Author(s):
LIU Dan12MENG Qingli1SHI Yaqin1YANG Shaowei1LIU Juanjuan1FAN Chunyan1WEI Wenliang2
(1.Baoji Academy of Agricultural Sciences, Baoji 722499, China;2.College of Agriculture, Yangtze University, Jingzhou 434000, China)
关键词:
甘蓝型油菜OSCA家族基因干旱胁迫盐胁迫表达模式
Keywords:
Brassica napusOSCA family genesdrought stresssalt stressexpression pattern
分类号:
S656.4
DOI:
doi:10.3969/j.issn.1000-4440.2025.06.002
文献标志码:
A
摘要:
钙通透性阳离子通道蛋白(OSCA)在植物逆境胁迫响应中发挥重要作用。为解析BnaOSCA家族成员在逆境胁迫下的响应机制,本研究从甘蓝型油菜的全基因组鉴定到37个OSCA基因,对BnaOSCA基因结构及其编码的蛋白质性质和表达模式进行分析。结果表明,这37个OSCA基因不均匀地分布在13条染色体上,可分为3个亚族。同一亚族的成员具有保守的基因结构和保守基序,且BnaOSCA家族基因启动子区域含有多种与逆境胁迫和激素响应相关的顺式作用元件。共线性分析结果表明,BnaOSCA家族基因在进化过程中存在基因丢失现象,同时也发生了基因家族扩张。在盐胁迫和干旱胁迫下,BnaOSCA家族基因的相对表达量存在差异,表明BnaOSCA家族基因在逆境胁迫响应过程中发挥不同的调控作用。本研究为进一步完善BnaOSCA家族基因调控网络提供了基础。
Abstract:
Hyperosmolarity-gate calcium-permeable channels (OSCA) play a significant role in the response of plants to abiotic stress. To elucidate the response mechanism of BnaOSCA family members under abiotic stress, this study identified 37 OSCA genes from the whole genome of Brassica napus and analyzed the gene structure, protein properties, and expression patterns. The results showed that these 37 OSCA genes were unevenly distributed on 13 chromosomes and could be divided into three subfamilies. Members of the same subfamily had conserved gene structures and conserved motifs, and the promoter regions of BnaOSCA family genes contained a variety of cis-acting elements related to abiotic stress and hormone responses. The collinearity analysis results indicated that gene loss occurred during the evolution of the BnaOSCA family genes, and gene family expansion also took place. Under salt and drought stress, the relative expression levels of BnaOSCA family genes varied, indicating that BnaOSCA family genes played different regulatory roles in the response to abiotic stress. This study provides a basis for further perfecting the regulatory network of BnaOSCA family genes.

参考文献/References:

[1]BATISTIC O, KUDLA J. Analysis of calcium signaling pathways in plants[J]. Biochimica et Biophysica Acta,2012,1820(8):1283-1293.
[2]TONG K, WU X Y, HE L, et al. Genome-wide identification and expression profile of OSCA gene family members in Triticum aestivum L.[J]. International Journal of Molecular Sciences,2021,23(1):469.
[3]EDEL K H, KUDLA J. Increasing complexity and versatility:how the calcium signaling toolkit was shaped during plant land colonization[J]. Cell Calcium,2015,57(3):231-246.
[4]YUAN F, YANG H, XUE Y, et al. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis[J]. Nature,2014,514(7522):367-371.
[5]HOU C, TIAN W, KLEIST T, et al. DUF221 proteins are a family of osmosensitive calcium-permeable cation channels conserved across eukaryotes[J]. Cell Research,2014,24(5):632-635.
[6]YIN L, ZHANG M L, WU R G, et al. Genome-wide analysis of OSCA gene family members in Vigna radiata and their involvement in the osmotic response[J]. BMC Plant Biology,2021,21(1):408.
[7]LI Y S, YUAN F, WEN Z H, et al. Genome-wide survey and expression analysis of the OSCA gene family in rice[J]. BMC Plant Biology,2015,15:261.
[8]CAI Q, WANG Y X, NI S F, et al. Genomewide identification and analysis of the OSCA gene family in barley(Hordeum vulgare L.)[J]. Journal of Genetics,2022,101:34.
[9]MIAO S, LI F S, HAN Y, et al. Identification of OSCA gene family in Solanum habrochaites and its function analysis under stress[J]. BMC Genomics,2022,23(1):547.
[10]王傲雪,张可为,张瑶,等. 番茄OSCA基因家族鉴定及不同胁迫条件下表达分析[J]. 东北农业大学学报,2019,50(1):19-28.
[11]李嘉琪,罗石磊,张帅磊,等. 辣椒OSCA基因家族的全基因组鉴定及不同胁迫条件下表达分析[J]. 植物科学学报,2022,40(2):187-196.
[12]SONG J M, GUAN Z L, HU J L, et al. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus[J]. Nature Plants,2020,6(1):34-45.
[13]WEI C, ZHAO W Q, FAN R Q, et al. Genome-wide survey of the F-box/Kelch(FBK) members and molecular identification of a novel FBK gene TaAFR in wheat[J]. PLoS One,2021,16(7):e0250479.
[14]SWARBRECK D, WILKS C, LAMESCH P, et al. The Arabidopsis information resource(TAIR):gene structure and function annotation[J]. Nucleic Acids Research,2008,36:1009-1014.
[15]GASTEIGER E, GATTIKER A, HOOGLAND C, et al. ExPASy:the proteomics server for in-depth protein knowledge and analysis[J]. Nucleic Acids Research,2003,31(13):3784-3788.
[16]HORTON P, PARK K J, OBAYASHI T, et al. WoLF PSORT:protein localization predictor[J]. Nucleic Acids Research,2007,35:585-587.
[17]SAITOU N, NEI M. The neighbor-joining method:a new method for reconstructing phylogenetic trees[J]. Molecular Biology and Evolution,1987,4(4):406-425.
[18]KUMAR S, STECHER G, TAMURA K. MEGA7:molecular evolutionary genetics analysis Version 7.0 for bigger datasets[J]. Molecular Biology and Evolution,2016,33(7):1870-1874.
[19]CHEN C J, CHEN H, ZHANG Y, et al. TBtools:an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant,2020,13(8):1194-1202.
[20]LESCOT M, DHAIS P, THIJS G, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research,2002,30(1):325-327.
[21]LIU D X, YU L Q, WEI L L, et al. BnTIR:an online transcriptome platform for exploring RNA-seq libraries for oil crop Brassica napus[J]. Plant Biotechnology Journal,2021,19(10):1895-1897.
[22]LYNCH M, CONERY J S. The evolutionary fate and consequences of duplicate genes[J]. Science,2000,290(5494):1151-1155.
[23]CHALHOUB B, DENOEUD F, LIU S, et al. Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome[J]. Science,2014,345(6199):950-953.
[24]GUO M, LIU J H, LU J P, et al. Genome-wide analysis of the CaHsp20 gene family in pepper:comprehensive sequence and expression profile analysis under heat stress[J].Frontiers in Plant Science,2015,6:806.
[25]ALBRECHT C, RUSSINOVA E, KEMMERLING B, et al. Arabidopsis somatic embryogenesis receptor kinase proteins serve brassinosteroid-dependent and -independent signaling pathways[J]. Physiologia Plantarum,2008,148(1):611-619.
[26]CAO L R, ZHANG P Y, LU X M, et al. Systematic analysis of the maize OSCA genes revealing ZmOSCA family members involved in osmotic stress and ZmOSCA2.4 confers enhanced drought tolerance in transgenic Arabidopsis[J]. International Journal of Molecular Sciences,2020,21(1):351.
[27]FUJITA Y, YOSHIDA T, YAMAGUCHI-SHINOZAKI K. Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants[J]. Physiologia Plantarum,2013,147(1):15-27.
[28]ZHAI Y J, WEN Z H, FANG W Q, et al. Functional analysis of rice OSCA genes overexpressed in the Arabidopsis osca1 mutant due to drought and salt stresses[J]. Transgenic Research,2021,30(6):811-820.

相似文献/References:

[1]王杰利,陈盛,付正莉,等.营养分配调节对甘蓝型油菜种子大小的影响及其机制[J].江苏农业学报,2016,(04):759.[doi:10.3969/j.issn.100-4440.2016.04.007]
 WANG Jie-li,CHEN Sheng,FU Zheng-li,et al.Seed size of lateral branchesremoved Brassica napus and its cytological mechanism[J].,2016,(06):759.[doi:10.3969/j.issn.100-4440.2016.04.007]
[2]何俊平,朱家成,王建平,等.甘蓝型油菜幼苗显微组织结构与抗寒性的关系[J].江苏农业学报,2017,(01):19.[doi:10.3969/j.issn.1000-4440.2017.01.004 ]
 HE Jun-ping,ZHU Jia-cheng,WANG Jian-ping,et al.The relationship between seedling microtructure and cold resistance of Brassica napus[J].,2017,(06):19.[doi:10.3969/j.issn.1000-4440.2017.01.004 ]
[3]王健胜,侯桂玲,李少钦,等.甘蓝型油菜育种亲本产量及品质性状遗传效应分析[J].江苏农业学报,2015,(03):489.[doi:10.3969/j.issn.1000-4440.2015.03.004]
 WANG Jian-sheng,HOU Gui-ling,LI Shao-qin,et al.Genetic effects of yield traits and quality traits for breeding parents of Brassica napus L.[J].,2015,(06):489.[doi:10.3969/j.issn.1000-4440.2015.03.004]
[4]陈盛,王宁宁,王玉康,等.一种快速高效筛选甘蓝型油菜转化植株的方法[J].江苏农业学报,2017,(05):982.[doi:doi:10.3969/j.issn.1000-4440.2017.05.004]
 CHEN Sheng,WANG Ning-ning,WANG Yu-kang,et al.A rapid and efficient approach to screening transformed plants of Brassica napus[J].,2017,(06):982.[doi:doi:10.3969/j.issn.1000-4440.2017.05.004]
[5]高建芹,浦惠明,龙卫华,等.甘蓝型油菜籽粒产量和品质性状对氮肥用量的响应[J].江苏农业学报,2019,(03):602.[doi:doi:10.3969/j.issn.1000-4440.2019.03.014]
 GAO Jian-qin,PU Hui-ming,LONG Wei-hua,et al.Effects of nitrogen application rate on seed yield and its quality parameters of Brassica napus L.[J].,2019,(06):602.[doi:doi:10.3969/j.issn.1000-4440.2019.03.014]
[6]熊丹,周霆,田方艳,等.甘蓝型油菜脂肪酸脱氢酶2兔源多克隆抗体的制备与应用[J].江苏农业学报,2020,(04):851.[doi:doi:10.3969/j.issn.1000-4440.2020.04.007]
 XIONG Dan,ZHOU Ting,TIAN Fang-yan,et al.Preparation and application of rabbit-derived polyclonal antibody against fatty acid desaturase 2 in Brassica napus[J].,2020,(06):851.[doi:doi:10.3969/j.issn.1000-4440.2020.04.007]
[7]陈元军,马娟娟,史睿,等.整合关联分析和共表达网络分析挖掘甘蓝型油菜籽粒质量候选基因[J].江苏农业学报,2023,(04):913.[doi:doi:10.3969/j.issn.1000-4440.2023.04.001]
 CHEN Yuan-jun,MA Juan-juan,SHI Rui,et al.Integrating genome-wide association study and weighted gene co-expression network analysis to explore candidate genes of seed weight in rapeseed (Brassica napus L.)[J].,2023,(06):913.[doi:doi:10.3969/j.issn.1000-4440.2023.04.001]
[8]万军斌,王旺田,孙万仓,等.甘蓝型油菜BnWSD家族基因鉴定及其在干旱胁迫下的表达特征[J].江苏农业学报,2024,(07):1170.[doi:doi:10.3969/j.issn.1000-4440.2024.07.003]
 WAN Junbin,WANG Wangtian,SUN Wancang,et al.Identification of BnWSD family genes in Brassica napus L. and their expression characteristics under drought stress[J].,2024,(06):1170.[doi:doi:10.3969/j.issn.1000-4440.2024.07.003]
[9]翟利佳,杨馥睿,刘自刚,等.甘蓝型油菜细胞质雄性不育的细胞学观察及不育胞质类型鉴定[J].江苏农业学报,2025,(01):21.[doi:doi:10.3969/j.issn.1000-4440.2025.01.003]
 ZHAI Lijia,YANG Furui,LIU Zigang,et al.Cytological observation and sterile cytoplasm type identification of cytoplasmic male sterile Brassica napus L.[J].,2025,(06):21.[doi:doi:10.3969/j.issn.1000-4440.2025.01.003]

备注/Memo

备注/Memo:
收稿日期:2024-09-27基金项目:国家自然科学基金项目(31871661)作者简介:刘丹(1995-),女,陕西岐山人,硕士,助理农艺师,主要研究方向作物遗传育种。(E-mail)1297097523@qq.com通讯作者:危文亮,(E-mail)whwenliang@163.com
更新日期/Last Update: 2025-07-16