参考文献/References:
[1]YANG Z N, TANG J J, YU M, et al. Sustainable cotton production through increased competitiveness:analysis of comparative advantage and influencing factors of cotton production in Xinjiang,China[J]. Agronomy,2022,12(10):2239.
[2]甄丛爱,买合吐木古力·艾孜不拉,张帅,等. 棉叶螨的抗药性现状与治理策略[J]. 植物保护学报,2023,50(3):559-577.
[3]张龚,周保平,王昱,等. 基于迁移学习和改进残差网络的棉花叶螨为害等级识别[J]. 浙江农业学报,2023,35(7):1729-1739.
[4]杨丽丽,张大卫,罗君,等. 基于SVM和AdaBoost的棉叶螨危害等级识别[J]. 农业机械学报,2019,50(2):14-20.
[5]何青海,马本学,瞿端阳,等. 基于机器视觉棉叶螨自动监测与分级方法研究[J]. 农机化研究,2013,35(4):152-155.
[6]章展熠,张宝荃,王周立,等. 多茶类CNN图像识别的数据增强优化及类激活映射量化评价[J]. 茶叶科学,2023,43(3):411-423.
[7]BANSAL M A, SHARMA D R, KATHURIA D M. A systematic review on data scarcity problem in deep learning:solution and applications[J]. ACM Computing Surveys (Csur),2022,54(10):1-29.
[8]周思聪,向峰,李红军,等. 基于自编码器GAN数据增强的工业小目标缺陷检测[J]. 现代制造工程,2025,(2):101-108.
[9]GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//NIPS. Proceedings of the 27th international conference on neural information processing systems. Cambridge:MIT Press,2014.
[10]SHARMA V, TRIPATHI A K, DAGA P, et al. ClGanNet:a novel method for maize leaf disease identification using ClGan and deep CNN[J]. Signal Processing:Image Communication,2024,120:117074.
[11]WANG F Y, RAO Y, LUO Q, et al. Practical cucumber leaf disease recognition using improved Swin Transformer and small sample size[J]. Computers and Electronics in Agriculture,2022,199:107163.
[12]SHARMA V, TRIPATHI A K, MITTAL H, et al. Weedgan:a novel generative adversarial network for cotton weed identification[J]. The Visual Computer,2023,39(12):6503-6519.
[13]NAZKI H, YOON S, FUENTES A, et al. Unsupervised image translation using adversarial networks for improved plant disease recognition[J]. Computers and Electronics in Agriculture,2020,168:105117.
[14]SINGH A K, RAO A, CHATTOPADHYAY P, et al. Effective plant disease diagnosis using Vision Transformer trained with leafy-generative adversarial network-generated images[J]. Expert Systems with Applications,2024,254:124387.
[15]MAI J Y, LIN H N, HONG X Z, et al. Prediction of potato rot level by using electronic nose based on data augmentation and channel attention conditional convolutional neural networks[J]. Chemosensors,2024,12(12):275.
[16]RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL]. (2015-11-19)
[2025-03-01]. https://doi.org/10.48550/arXiv.1511.06434.
[17]REDDY S R G, VARMA G P S, DAVULURI R L. Resnet-based modified red deer optimization with DLCNN classifier for plant disease identification and classification[J]. Computers and Electrical Engineering,2023,105:108492.
[18]MA R, WANG J, ZHAO W, et al. Identification of maize seed varieties using MobileNetV2 with improved attention mechanism CBAM[J]. Agriculture,2022,13(1):11.
[19]FANG W, GU E M, YI W N, et al. A new method of image restoration technology based on WGAN[J]. Computer Systems Science And Engineering,2022,41(2):689-698.
[20]GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs[C]//NIPS. Proceedings of the 24st international conference on neural information processing systems. Long Beach:Curran Associates Inc.,2017.