[1]毕淼,詹培,何永坤,等.基于遥感数据与作物模型结合的重庆市水稻估产方法[J].江苏农业学报,2025,(05):893-904.[doi:doi:10.3969/j.issn.1000-4440.2025.05.008]
 BI Miao,ZHAN Pei,HE Yongkun,et al.Rice yield estimation method in Chongqing based on remote sensing data and crop model[J].,2025,(05):893-904.[doi:doi:10.3969/j.issn.1000-4440.2025.05.008]
点击复制

基于遥感数据与作物模型结合的重庆市水稻估产方法()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年05期
页码:
893-904
栏目:
农业信息工程
出版日期:
2025-05-31

文章信息/Info

Title:
Rice yield estimation method in Chongqing based on remote sensing data and crop model
作者:
毕淼1詹培12何永坤1范莉1张建平1
(1.中国气象局气候资源经济转化重点开放实验室/重庆市气象科学研究所,重庆401147;2.南京信息工程大学生态与应用气象学院,江苏南京210044)
Author(s):
BI Miao1ZHAN Pei12HE Yongkun1FAN Li1ZHANG Jianping1
(1.China Meteorological Administration Key Open Laboratory of Transforming Climate Resources to Economy/Chongqing Institute of Meteorological Sciences, Chongqing 401147, China;2.School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China)
关键词:
水稻作物模型遥感估产数据耦合
Keywords:
ricecrop modelsremote sensing yield estimationdata combination
分类号:
S511;S127
DOI:
doi:10.3969/j.issn.1000-4440.2025.05.008
文献标志码:
A
摘要:
水稻是世界主要粮食作物,准确预测其产量对粮食安全和农业资源管理具有重要意义。本研究采用ORYZA(V3)作物模型和MODIS遥感数据,建立了遥感数据与作物模型结合的重庆市水稻估产模型。主要结论如下:使用水稻分期播种试验数据对模型中的作物参数进行校正,校正结果显示,模型对生育期的模拟误差低于5%,地上总生物量(WAGT)和穗生物量(WSO)模拟值与实测值之间的决定系数(R2)均超过0.970,归一化均方根误差(nRMSE)低于22.0%,提高了模型在重庆地区的适用性;通过多参数组合下的叶面积指数(LAI)与水稻单产的回归分析,建立了在最优结合日期(日序182,7月1日)下的LAI与水稻单产的回归模型,据此完成对全市2023年水稻单产估算,平均准确率达到87%,总体效果较好,尤其是对重庆市西部、中部、东南部等水稻主产区的预测精度更高。研究结果证实,将作物模型与遥感数据相结合,能够有效提升区域农作物产量估算的精度,在作物的产量预测领域展现出巨大的应用前景。
Abstract:
Rice is a primary food crop globally, and accurate prediction of its yield is of great significance for food security and agricultural resource management. This study used the ORYZA(V3) crop model and MODIS remote sensing data to establish a rice yield estimation model for Chongqing. The main conclusions were as follows: the crop parameters in the model were calibrated using rice staged sowing experiment data. The calibration results showed that the simulation error of the model for the growth period was less than 5%, and the determination coefficients (R2) between the simulated and measured values of total aboveground biomass (WAGT) and panicle biomass (WSO) exceeded 0.970. The normalized root mean square error (nRMSE) was less than 22.0%, which improved the applicability of the model in Chongqing. Through regression analysis of LAI and rice yield under multiple parameter combinations of the model, a regression model of LAI and rice yield under the optimal combination date (182nd day of the year, July 1) was established. Based on this, the estimation of rice yield in Chongqing in 2023 was completed with an average accuracy of 87%, and the overall effect was good, especially in the main rice producing areas such as the western, central, and southeastern regions, where the accuracy was higher. The research results confirm that combining crop models with remote sensing data can effectively improve the accuracy of regional crop yield estimation and show great application prospects in the field of crop yield prediction.

参考文献/References:

[1]国家统计局. 中国统计年鉴[M]. 北京:中国统计出版社,2022.
[2]张强,张戈丽,朱道林,等. 1980-2018年中国水稻生产变化的时空格局[J]. 资源科学,2022,44(1):687-700.
[3]王鹏新,齐璇,李俐,等. 基于随机森林回归的玉米单产估测[J]. 农业机械学报,2019,50(7):237-245.
[4]吴炳方,张淼,曾红伟,等. 全球农情遥感速报系统20年[J]. 遥感学报, 2019,23(6):1053-1063.
[5]WU B F, MA Z H, YAN N N. Agricultural drought mitigating indices derived from the changes in drought characteristics[J]. Remote Sensing of Environment,2020,244:111813.
[6]LIU W H, LI Z T, LI Y, et al. Heterogeneous impacts of excessive wetness on maize yields in China:evidence from statistical yields and process-based crop models[J]. Agricultural and Forest Meteorology,2022,327:109205.
[7]ZHANG Z T, SUN S, ZHANG F L, et al. Using estimated radiation in crop models amplified the negative impacts of climate variability on maize and winter wheat yields in China[J]. Agricultural and Forest Meteorology,2022,318:108914.
[8]CHEN N, LI X Y, SHI H B, et al. Modeling effects of biodegradable film mulching on evapotranspiration and crop yields in Inner Mongolia[J]. Agricultural Water Management,2023,275:107996.
[9]JIN X L, KUMAR L, LI Z H, et al. A review of data assimilation of remote sensing and crop models[J]. European Journal of Agronomy,2018,92:141-152.
[10]YU S X, ZHANG N Y, KAISER E, et al. Integrating chlorophyll fluorescence parameters into a crop model improves growth prediction under severe drought[J]. Agricultural and Forest Meteorology,2021,303:108367.
[11]赵龙才,李粉玲,常庆瑞. 农作物遥感识别与单产估算研究综述[J]. 农业机械学报,2023,54(2):1-19.
[12]陈仲新,任建强,唐华俊,等. 农业遥感研究应用进展与展望[J]. 遥感学报,2016,20(5):748-767.
[13]DORIGO W A, ZURITA-MILLA R, DE WIT A J W, et al. A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling[J]. International Journal of Applied Earth Observation and Geoinformation,2007,9(2):165-193.
[14]LI Y, ZHOU Q G, ZHOU J, et al. Assimilating remote sensing information into a coupled hydrology-crop growth model to estimate regional maize yield in arid regions[J]. Ecological Modelling,2014,291:15-27.
[15]ZHANG L, GUO C L, ZHAO L Y, et al. Estimating wheat yield by integrating the WheatGrow and PROSAIL models[J]. Field Crops Research,2016,192:55-66.
[16]钱凤魁,王化军,王祥国,等. 基于WOFOST模型与遥感数据同化的县级尺度玉米估产研究[J]. 沈阳农业大学学报,2024,55(2):138-152.
[17]WANG D, STRUIK P C, LIANG L, et al. Developing remote sensing- and crop model-based methods to optimize nitrogen management in rice fields[J]. Computers and Electronics in Agriculture,2024,220:108899.
[18]刘正春,徐占军,毕如田,等. 基于4DVAR和EnKF的遥感信息与作物模型冬小麦估产[J]. 农业机械学报,2021,52(6):223-231.
[19]LU J, LI J, FU H K, et al. Estimation of rice yield using multi-source remote sensing data combined with crop growth model and deep learning algorithm[J]. Agricultural and Forest Meteorology,2025,370:110600.
[20]邢会敏,李振海,徐新刚,等. 基于遥感和AquaCrop作物模型的多同化算法比较[J]. 农业工程学报,2017,33(13):183-192.
[21]XIE Y, WANG P X, BAI X J, et al. Assimilation of the leaf area index and vegetation temperature condition index for winter wheat yield estimation using Landsat imagery and the CERES-Wheat model[J]. Agricultural and Forest Meteorology,2017,246:194-206.
[22]DE WIT A, DUVEILLER G, DEFOURNY P. Estimating regional winter wheat yield with WOFOST through the assimilation of green area index retrieved from MODIS observations[J]. Agricultural and Forest Meteorology,2012,164:39-52.
[23]ZILIANI M G, ALTAF M U, ARAGON B, et al. Early season prediction of within-field crop yield variability by assimilating CubeSat data into a crop model[J]. Agricultural and Forest Meteorology,2022,313:108736.
[24]WU S R, YANG P, REN J Q, et al. Regional winter wheat yield estimation based on the WOFOST model and a novel VW-4DEnSRF assimilation algorithm[J]. Remote Sensing of Environment,2021,255:112276.
[25]ZHENG J H, ZHANG S. Improving rice phenology simulations based on the Bayesian model averaging method[J]. European Journal of Agronomy,2023,142:126646.
[26]YU Q N, CUI Y L, LIU L G. Assessment of the parameter sensitivity for the ORYZA model at the regional scale-A case study in the Yangtze River Basin[J]. Environmental Modelling & Software,2023, 159:105575.
[27]YOUNG M D B, GOWING J W, WYSEURE G C L, et al. Parched-thirst:development and validation of a process-based model of rainwater harvesting[J]. Agricultural Water Management,2002,55(2):121-140.
[28]XIAO X M, BOLES S, LIU J Y, et al. Mapping paddy rice agriculture in Southern China using multi-temporal MODIS images[J]. Remote Sensing of Environment,2005,95(4):480-492.
[29]CLEVERS J G P W. A simplified approach for yield prediction of sugar beet based on optical remote sensing data[J]. Remote Sensing of Environment,1997,61(2):221-228.
[30]LOBELL D B, THAU D, SEIFERT C, et al. A scalable satellite-based crop yield mapper[J]. Remote Sensing of Environment,2015,164:324-333.
[31]MARTRE P, WALLACH D, ASSENG S, et al. Multimodel ensembles of wheat growth:many models are better than one[J]. Global Change Biology,2015,21(2):911-925.
[32] RUANE A C, HUDSON N I, ASSENG S, et al. Multi-wheat-model ensemble responses to interannual climate variability[J]. Environmental Modelling & Software,2016,81:86-101.

相似文献/References:

[1]王士磊,丁正权,黄海祥.水稻隐性早熟突变体ref早熟性的遗传分析和基因定位[J].江苏农业学报,2016,(04):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
 WANG Shi-lei,DING Zheng-quan,HUANG Hai-xiang.Inheritance and gene mapping of recessive earliness in rice (Oryza sativa L.)[J].,2016,(05):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
[2]王在满,郑乐,张明华,等.不同播种方式对直播水稻倒伏指数和根系生长的影响[J].江苏农业学报,2016,(04):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
 WANG Zai-man,ZHENG Le,ZHANG Ming-hua,et al.Effects of seeding manners on lodging index and root growth of directseeded rice[J].,2016,(05):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
[3]易能,薛延丰,石志琦,等.微囊藻毒素对水稻种子萌发和幼苗生长的胁迫作用[J].江苏农业学报,2016,(04):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
 YI Neng,XUE Yan-feng,SHI Zhi-qi,et al.Inhibitory effect of microcystins on seed germination and seedling growth of rice[J].,2016,(05):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
[4]刘凯,王爱民,严国红,等.一个水稻显性矮秆突变体的遗传特性与降株高能力[J].江苏农业学报,2016,(05):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
 LIU Kai,WANG Ai-min,YAN Guo-hong,et al.Genetic analysis and plant height reduction of a dominant dwarf mutant of rice[J].,2016,(05):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
[5]王红,杨镇,裴文琪,等.功能性微生物制剂对镉胁迫下水稻生长及生理特性的影响[J].江苏农业学报,2016,(05):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
 WANG Hong,YANG Zhen,PEI Wen-qi,et al.Growth and physiological characteristics of cadmium-stressed rice influenced by functional microorganism agent[J].,2016,(05):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
[6]孙玲,单捷,毛良君,等.基于遥感和Moran's I指数的水稻面积变化空间自相关性研究[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
 SUN Ling,SHAN Jie,MAO Liang-jun,et al.Spatial autocorrelation of changes in paddy rice area based on remote sensing and Moran’s I index[J].,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
[7]张晓忆,李卫国,景元书,等.多种光谱指标构建决策树的水稻种植面积提取[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
 ZHANG Xiao-yi,LI Wei-guo,JING Yuan-shu,et al.Extraction of paddy rice area by constructing the decision tree with multiple spectral indices[J].,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
[8]裔传灯,李玮,王德荣,等.水稻GW5基因的1212-bp Indel变异对粒形的影响[J].江苏农业学报,2016,(06):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
 YI Chuan-deng,LI Wei,WANG De-rong,et al.Effect of 1212-bp Indel variation of gene GW5 on rice grain shape[J].,2016,(05):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
[9]刘红江,陈虞雯,张岳芳,等.不同播栽方式对水稻叶片光合特性及产量的影响[J].江苏农业学报,2016,(06):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
 LIU Hong-jiang,CHEN Yu-wen,ZHANG Yue-fang,et al.Effects of planting pattern on leaf photosynthetic characteristics and yield of rice[J].,2016,(05):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
[10]郭保卫,许轲,魏海燕,等.钵苗机插水稻茎秆的抗倒伏能力[J].江苏农业学报,2016,(06):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]
 GUO Bao-wei,XU Ke,WEI Hai-yan,et al.Culm lodging resistance characteristics of bowl seedling mechanical-transplanting rice[J].,2016,(05):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]

备注/Memo

备注/Memo:
收稿日期:2024-08-17基金项目:国家自然科学基金面上项目(42175193);中国气象局创新发展专项(CXFZ2023P016);重庆市气象局青年基金项目(QNJJ202306)作者简介:毕淼(1996-),女,重庆万州人,硕士研究生,主要从事作物模型模拟研究。(E-mail)miaobi712@163.com通讯作者:詹培,(E-mail)peizhan@nuist.edu.cn
更新日期/Last Update: 2025-06-24