参考文献/References:
[1]YE S H, HUA S J, MA T T, et al. Genetic and multi-omics analyses reveal BnaA07.PAP2In-184-317 as the key gene conferring anthocyanin-based color in Brassica napus flowers[J]. Journal of Experimental Botany,2022,73(19):6630-6645.
[2]DAVIES K M, SCHWINN K E. Molecular biology and biotechnology of flower pigments[M]. Heidelberg:Springer Berlin Heidelberg,2010.
[3]SAIGO T, WANG T, WATANABE M, et al. Diversity of anthocyanin and proanthocyanin biosynthesis in land plants[J]. Current Opinion in Plant Biology,2020,55:93-99.
[4]乔廷廷,郭玲. 花青素来源、结构特性和生理功能的研究进展[J]. 中成药,2019,41(2):388-392.
[5]刘国元,方威,余春梅,等. 花青素调控植物花色的研究进展[J]. 安徽农业科学,2021,49(3):1-4,9.
[6]刘志祥,洪亚辉,莫爱华,等. 观赏植物花色分子遗传学及基因工程研究进展[J]. 湖南农业大学学报(自然科学版),2002,28(6):531-534.
[7]刘红,魏晓羽,马辉,等. 几种兰属地生种花瓣花色素组成分析[J]. 江苏农业学报,2022,38(6):1657-1677.
[8]高飞,柯燚,金韬,等. 光照对植物合成花色素苷的影响研究进展[J]. 中国农学通报,2014,30(34):6-10.
[9]LIU X F, TENG R P, XIANG L L, et al. Sucrose-delaying flower color fading associated with delaying anthocyanin accumulation decrease in cut Chrysanthemum[J]. PeerJ,2023,11:16520.
[10]NURAINI L, ANDO Y, KAWAI K, et al. Anthocyanin regulatory and structural genes associated with violet flower color of Matthiola incana[J]. Planta,2020,251(3):61.
[11]SUN Y, HU P L, JIANG Y N, et al. Integrated metabolome and transcriptome analysis of petal anthocyanin accumulation mechanism in Gloriosa superba ‘Rothschildiana’ during different flower development stages[J]. International Journal of Molecular Sciences,2023,24(20):15034.
[12]LIU Y F, ZHANG J H, YANG X H, et al. Diversity in flower colorations of Ranunculus asiaticus L. revealed by anthocyanin biosynthesis pathway in view of gene composition,gene expression patterns,and color phenotype[J]. Environmental Science and Pollution Research International,2019,26(14):13785-13794.
[13]WANG Z, LI X, CHEN M M, et al. Molecular and metabolic insights into anthocyanin biosynthesis for spot formation on Lilium leichtlinii var. maximowiczii flower petals[J]. International Journal of Molecular Sciences,2023,24(3):1844.
[14]MORITA Y, SAITO R, BAN Y, et al. Tandemly arranged Chalcone synthase a genes contribute to the spatially regulated expression of siRNA and the natural bicolor floral phenotype in Petunia hybrida[J]. Plant Journal,2012,70(5):739-749.
[15]CAMPANELLA J J, SMALLEY J V, DEMPSEY M E. A phylogenetic examination of the primary anthocyanin production pathway of the plantae[J]. Botanical Studies,2014,55(1):10.
[16]YANG Y, CUI B H, TAN Z W, et al. RNA sequencing and anthocyanin synthesis-related genes expression analyses in white-fruited Vaccinium uliginosum[J]. BMC Genomics,2018,19(1):930.
[17]TANAKA Y, BRUGLIERA F. Flower colour and cytochromes P450[C]. London: The Royal Society,2013.
[18]周惠,文锦芬,邓明华,等. 植物花青素生物合成相关基因研究进展[J]. 辣椒杂志,2011,9(4):1-7.
[19]GROTEWOLD E. The genetics and biochemistry of floral pigments[J]. Annual Review of Plant Biology,2006,57:761-780.
[20]TANAKA Y, OHMIYA A. Seeing is believing:engineering anthocyanin and carotenoid biosynthetic pathways[J]. Current Opinion in Biotechnology,2008,19(2):190-197.
[21]MATTIOLI R, FRANCIOSO A, MOSCA L, et al. Anthocyanins:a comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases[J]. Molecules,2020,25(17):3809.
[22]LEV-YADUN S, GOULD K S. Role of anthocyanins in plant defence[M]. New York: Springer,2008.
[23]ILK N, DING J, IHNATOWICZ A, et al. Natural variation for anthocyanin accumulation under high-light and low-temperature stress is attributable to the enhancer of Ag-4 2 (Hua2) locus in combination with production of anthocyanin pigment1 (pap1) and pap2[J]. New Phytologist,2015,206(1):422-435.
[24]HENRY-KIRK R A, PLUNKETT B, HALL M, et al. Solar UV light regulates flavonoid metabolism in apple (Malus × domestica)[J]. Plant,Cell & Environment,2018,41(3):675-688.
[25]KATAOKA I, BEPPU K. UV irradiance increases development of red skin color and anthocyanins in ‘Hakuho’ peach[J]. HortScience,2004,39(6):1234-1237.
[26]WINKEL-SHIRLEY B. Flavonoid biosynthesis. A colorful model for genetics,biochemistry,cell biology,and biotechnology[J]. Plant Physiology,2001,126(2):485-493.
[27]WEI Y Z, HU F C, HU G B, et al. Differential expression of anthocyanin biosynthetic genes in relation to anthocyanin accumulation in the pericarp of Litchi chinensis Sonn[J]. PLoS One,2011,6(4):19455.
[28]WANG R, MAO C J, MING F. PeMYB4L interacts with PeMYC4 to regulate anthocyanin biosynthesis in Phalaenopsis orchid[J]. Plant Science,2022,324:111423.
[29]KOES R, VERWEIJ W, QUATTROCCHIO F. Flavonoids:a colorful model for the regulation and evolution of biochemical pathways[J]. Trends in Plant Science,2005,10(5):236-242.
[30]CHOPRA S, HOSHINO A, BODDU J, et al. Flavonoid pigments as tools in molecular genetics[M]. New York:Springer,2006.
[31]李琴琴,董山榕,罗建让,等. 卵叶牡丹PqDFR和PqANS及启动子克隆与功能分析[J]. 园艺学报,2024,51(6):1256-1272.
[32]BOSS P K, DAVIES C, ROBINSON S P. Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv Shiraz grape berries and the implications for pathway regulation[J]. Plant Physiology,1996,111(4):1059-1066.
[33]FALCONE FERREYRA M L, RIUS S P, CASATI P. Flavonoids:biosynthesis,biological functions,and biotechnological applications[J]. Frontiers in Plant Science,2012,3:222.
[34]MORITA Y, SAITOH M, HOSHINO A, et al. Isolation of cDNAs for R2R3-MYB,bHLH and WDR transcriptional regulators and identification of c and ca mutations conferring white flowers in the Japanese morning glory[J]. Plant & Cell Physiology,2006,47(4):457-470.
[35]ALLAN A C, HELLENS R P, LAING W A. MYB transcription factors that colour our fruit[J]. Trends in Plant Science,2008,13(3):99-102.
[36]NUGROHO L H, VERBERNE M C, VERPOORTE R. Activities of enzymes involved in the phenylpropanoid pathway in constitutively salicylic acid-producing tobacco plants[J]. Plant Physiology and Biochemistry,2002,40(9):755-760.
[37]CHON S U, BOO H O, HEO B G, et al. Anthocyanin content and the activities of polyphenol oxidase,peroxidase and phenylalanine ammonia-lyase in lettuce cultivars[J]. International Journal of Food Sciences and Nutrition,2012,63(1):45-48.
[38]李林菊,冯志熙,李新艺,等. 滇水金凤PAL基因的克隆与表达分析[J]. 农业生物技术学报,2023,31(11):2272-2283.
[39]WANG H Q, ARAKAWA O, MOTOMURA Y. Influence of maturity and bagging on the relationship between anthocyanin accumulation and phenylalanine ammonia-lyase(PAL)activity in‘Jonathan’apples[J]. Postharvest Biology and Technology,2000,19(2):123-128.
[40]HE F, MU L, YAN G L, et al. Biosynthesis of anthocyanins and their regulation in colored grapes[J]. Molecules,2010,15(12):9057-9091.
[41]SUN W, MENG X Y, LIANG L J, et al. Molecular and biochemical analysis of Chalcone Synthase from Freesia hybrid in flavonoid biosynthetic pathway[J]. PLoS One,2015,10(3):0119054.
[42]HUANG J, ZHAO X, ZHANG Y, et al. Chalcone-synthase-encoding RdCHS1 is involved in flavonoid biosynthesis in Rhododendron delavayi[J]. Molecules,2024,29(8):1822.
[43]WANG Y, DOU Y, WANG R, et al. Molecular characterization and functional analysis of Chalcone synthase from Syringa oblata Lindl. in the flavonoid biosynthetic pathway[J]. Gene,2017,635:16-23.
[44]NABAVI S M, DUNJA , TOMCZYK M, et al. Flavonoid biosynthetic pathways in plants:versatile targets for metabolic engineering[J]. Biotechnology Advances,2020,38:107316.
[45]MORITA Y, TAKAGI K, FUKUCHI-MIZUTANI M, et al. A Chalcone isomerase-like protein enhances flavonoid production and flower pigmentation[J]. Plant Journal,2014,78(2):294-304.
[46]RYAN K G, SWINNY E E, WINEFIELD C, et al. Flavonoids and UV photoprotection in Arabidopsis mutants[J]. Journal of Biosciences,2001,56(9/10):745-754.
[47]DAS P K, SHIN D H, CHOI S B, et al. Cytokinins enhance sugar-induced anthocyanin biosynthesis in Arabidopsis[J]. Molecules and Cells,2012,34(1):93-102.
[48]MA L L, JIA W J, DUAN Q, et al. Heterologous expression of Platycodon grandiflorus PgF3′5′H modifies flower color pigmentation in tobacco[J]. Genes,2023,14(10):1920.
[49]FINN R D, COGGILL P, EBERHARDT R Y, et al. The pfam protein families database:towards a more sustainable future[J]. Nucleic Acids Research,2016,44(1):279-285.
[50]LIM S H, YOU M K, KIM D H, et al. RNAi-mediated suppression of dihydroflavonol 4-reductase in tobacco allows fine-tuning of flower color and flux through the flavonoid biosynthetic pathway[J]. Plant Physiology and Biochemistry,2016,109:482-490.
[51]NI J, RUAN R J, WANG L J, et al. Functional and correlation analyses of dihydroflavonol-4-reductase genes indicate their roles in regulating anthocyanin changes in Ginkgo biloba[J]. Industrial Crops and Products,2020,152:112546.
[52]韩科厅,赵莉,唐杏姣,等. 菊花花青素苷合成关键基因表达与花色表型的关系[J]. 园艺学报,2012,39(3):516-524.
[53]ZAN W X, WU Q K, DOU S H, et al. Analysis of flower color diversity revealed the co-regulation of cyanidin and peonidin in the red petals coloration of Rosa rugosa[J]. Plant Physiology and Biochemistry,2024,216:109126.
[54]XIE D Y, JACKSON L A, COOPER J D, et al. Molecular and biochemical analysis of two cDNA clones encoding dihydroflavonol-4-reductase from Medicago truncatula[J]. Plant Physiology,2004,134(3):979-994.
[55]WILMOUTH R C, TURNBULL J J, WELFORD R W D, et al. Structure and mechanism of anthocyanidin synthase from Arabidopsis thaliana[J]. Structure,2002,10(1):93-103.
[56]FORKMANN G, MARTENS S. Metabolic engineering and applications of flavonoids[J]. Current Opinion in Biotechnology,2001,12(2):155-160.
[57]平怀磊,郭雪,余潇,等. 滇牡丹PdANS的克隆、表达及与花青素含量的相关性[J]. 生物技术通报,2023,39(3):206-217.
[58]AHARONI A, DE VOS C H, WEIN M, et al. The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco[J]. Plant Journal,2001,28(3):319-332.
[59]XU F, LI L L, ZHANG W W, et al. Isolation,characterization,and function analysis of a flavonol synthase gene from Ginkgo biloba[J]. Molecular Biology Reports,2012,39(3):2285-2296.
[60]LUO P, NING G G, WANG Z, et al. Disequilibrium of flavonol synthase and dihydroflavonol-4-reductase expression associated tightly to white vs. red color flower formation in plants[J]. Frontiers in Plant Science,2016,6:1257.
[61]HOLTON T A, BRUGLIERA F, TANAKA Y. Cloning and expression of flavonol synthase from Petunia hybrida[J]. Plant Journal,1993,4(6):1003-1010.
[62]NIELSEN K, DEROLES S C, MARKHAM K R, et al. Antisense flavonol synthase alters copigmentation and flower color in Lisianthus[J]. Molecular Breeding,2002,9(4):217-229.
[63]SAITO K, YAMAZAKI M. Biochemistry and molecular biology of the late-stage of biosynthesis of anthocyanin:lessons from Perilla frutescens as a model plant[J]. New Phytologist,2002,155(1):9-23.
[64]SPRINGOB K, NAKAJIMA J I, YAMAZAKI M, et al. Recent advances in the biosynthesis and accumulation of anthocyanins[J]. Natural Product Reports,2003,20(3):288-303.
[65]MORITA Y, ISHIGURO K, TANAKA Y, et al. Spontaneous mutations of the UDP-glucose:flavonoid 3-O-glucosyltransferase gene confers pale- and dull-colored flowers in the Japanese and common morning glories[J]. Planta,2015,242(3):575-587.
[66]TERRIER N, TORREGROSA L, AGEORGES A, et al. Ectopic expression of VvMybPA2 promotes proanthocyanidin biosynthesis in grapevine and suggests additional targets in the pathway[J]. Plant Physiology,2009,149(2):1028-1041.
[67]LLOYD A, BROCKMAN A, AGUIRRE L, et al. Advances in the MYB-bHLH-WD repeat (MBW) pigment regulatory model:addition of a WRKY factor and co-option of an anthocyanin MYB for betalain regulation[J]. Plant & Cell Physiology,2017,58(9):1431-1441.
[68]TO K Y, WANG C K. Molecular breeding of fower color[M]. London:Global Science Books,2006.
[69]MA D W, PETER CONSTABEL C. MYB repressors as regulators of phenylpropanoid metabolism in plants[J]. Trends in Plant Science,2019,24(3):275-289.
[70]BUER C S, IMIN N, DJORDJEVIC M A. Flavonoids:new roles for old molecules[J]. Journal of Integrative Plant Biology,2010,52(1):98-111.
[71]ROMERO I, FUERTES A, BENITO M J, et al. More than 80 R2R3-MYB regulatory genes in the genome of Arabidopsis thaliana[J]. Plant Journal,1998,14(3):273-284.
[72]RABINOWICZ P D, BRAUN E L, WOLFE A D, et al. Maize R2R3 Myb genes:sequence analysis reveals amplification in the higher plants[J]. Genetics,1999,153(1):427-444.
[73]CAO Y L, JIA H M, XING M Y, et al. Genome-wide analysis of MYB gene family in Chinese bayberry (Morella rubra) and identification of members regulating flavonoid biosynthesis[J]. Frontiers in Plant Science,2021,12:691384.
[74]RICARDO PREZ-DAZ J, PREZ-DAZ J, MADRID-ESPINOZA J, et al. New member of the R2R3-MYB transcription factors family in grapevine suppresses the anthocyanin accumulation in the flowers of transgenic tobacco[J]. Plant Molecular Biology,2016,90(1/2):63-76.
[75]DUBOS C, STRACKE R, GROTEWOLD E, et al. MYB transcription factors in Arabidopsis[J]. Trends in Plant Science,2010,15(10):573-581.
[76]ZHANG Q, HAO R J, XU Z D, et al. Isolation and functional characterization of a R2R3-MYB regulator of Prunus mume anthocyanin biosynthetic pathway[J]. Plant Cell,Tissue and Organ Culture,2017,131(3):417-429.
[77]LIU Q, LI S J, LI T J, et al. The characterization of R2R3-MYB genes in water lily Nymphaea colorata reveals the involvement of NcMYB25 in regulating anthocyanin synthesis[J]. Plants,2024,13(21):2990.
[78]ZHANG B, XU X J, HUANG R W, et al. CRISPR/Cas9-mediated targeted mutation reveals a role for AN4 rather than DPL in regulating venation formation in the Corolla tube of Petunia hybrida[J]. Horticulture Research,2021,8(1):116.
[79]ZHANG X P, XU Z D, YU X Y, et al. Identification of two novel R2R3-MYB transcription factors,PsMYB114L and PsMYB12L,related to anthocyanin biosynthesis in Paeonia suffruticosa[J]. International Journal of Molecular Sciences,2019,20(5):1055.
[80]HSU C C, CHEN Y Y, TSAI W C, et al. Three R2R3-MYB transcription factors regulate distinct floral pigmentation patterning in Phalaenopsis spp.[J]. Plant Physiology,2015,168(1):175-191.
[81]HONG Y, LI M L, DAI S L. Ectopic expression of multiple Chrysanthemum (Chrysanthemum × morifolium) R2R3-MYB transcription factor genes regulates anthocyanin accumulation in tobacco[J]. Genes,2019,10(10):777.
[82]YOSHIDA K, MA D W, PETER CONSTABEL C. The MYB182 protein down-regulates proanthocyanidin and anthocyanin biosynthesis in poplar by repressing both structural and regulatory flavonoid genes[J]. Plant Physiology,2015,167(3):693-710.
[83]ANWAR M, WANG G Q, WU J C, et al. Ectopic overexpression of a novel R2R3-MYB,NtMYB2 from Chinese Narcissus represses anthocyanin biosynthesis in tobacco[J]. Molecules,2018,23(4):781.
[84]ALBERT N W, DAVIES K M, LEWIS D H, et al. A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots[J]. The Plant Cell,2014,26(3):962-980.
[85]HU X M, LIANG Z H, SUN T X, et al. The R2R3-MYB transcriptional repressor TgMYB4 negatively regulates anthocyanin biosynthesis in tulips (Tulipa gesneriana L.)[J]. International Journal of Molecular Sciences,2024,25(1):563.
[86]FELLER A, YUAN L, GROTEWOLD E. The BIF domain in plant bHLH proteins is an ACT-like domain[J]. The Plant Cell,2017,29(8):1800-1802.
[87]FELLER A, MACHEMER K, BRAUN E L, et al. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors[J]. Plant Journal,2011,66(1):94-116.
[88]HICHRI I, BARRIEU F, BOGS J, et al. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway[J]. Journal of Experimental Botany,2011,62(8):2465-2483.
[89]LI C H, QIU J, DING L, et al. Anthocyanin biosynthesis regulation of DhMYB2 and DhbHLH1 in Dendrobium hybrids petals[J]. Plant Physiology and Biochemistry,2017,112:335-345.
[90]HEIM M A, JAKOBY M, WERBER M, et al. The basic helix-loop-helix transcription factor family in plants:a genome-wide study of protein structure and functional diversity[J]. Molecular Biology and Evolution,2003,20(5):735-747.
[91]NESI N, DEBEAUJON I, JOND C, et al. The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques[J]. The Plant Cell,2000,12(10):1863-1878.
[92]DENG J, LI J J, SU M Y, et al. A bHLH gene NnTT8 of Nelumbo nucifera regulates anthocyanin biosynthesis[J]. Plant Physiology and Biochemistry,2021,158:518-523.
[93]SPELT C, QUATTROCCHIO F, MOL J N, et al. Anthocyanin1 of Petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes[J]. The Plant Cell,2000,12(9):1619-1632.
[94]ZHAO R, SONG X X, YANG N, et al. Expression of the subgroup IIIf bHLH transcription factor CpbHLH1 from Chimonanthus praecox (L.) in transgenic model plants inhibits anthocyanin accumulation[J]. Plant Cell Reports,2020,39(7):891-907.
[95]ZHAO P C, LI X X, JIA J T, et al. BHLH92 from sheepgrass acts as a negative regulator of anthocyanin/proanthocyandin accumulation and influences seed dormancy[J]. Journal of Experimental Botany,2019,70(1):269-284.
[96]NEER E J, SCHMIDT C J, NAMBUDRIPAD R, et al. The ancient regulatory-protein family of WD-repeat proteins[J]. Nature,1994,371(6495):297-300.
[97]SMITH T F, GAITATZES C, SAXENA K, et al. The WD repeat:a common architecture for diverse functions[J]. Trends in Biochemical Sciences,1999,24(5):181-185.
[98]MISHRA A K, PURANIK S, PRASAD M. Structure and regulatory networks of WD40 protein in plants[J]. Journal of Plant Biochemistry and Biotechnology,2012,21(1):32-39.
[99]CAREY C C, STRAHLE J T, SELINGER D A, et al. Mutations in the pale aleurone color1 regulatory gene of the Zea mays anthocyanin pathway have distinct phenotypes relative to the functionally similar TRANSPARENT TESTA GLABRA1 gene in Arabidopsis thaliana[J]. The Plant Cell,2004,16(2):450-464.
[100]YAO P F, ZHAO H X, LUO X P, et al. Fagopyrum tataricum FtWD40 functions as a positive regulator of anthocyanin biosynthesis in transgenic tobacco[J]. Journal of Plant Growth Regulation,2017,36(3):755-765.
[101]DE VETTEN N, QUATTROCCHIO F, MOL J, et al. The an11 locus controlling flower pigmentation in Petunia encodes a novel WD-repeat protein conserved in yeast,plants,and animals[J]. Genes & Development,1997,11(11):1422-1434.
[102]WALKER A R, DAVISON P A, BOLOGNESI-WINFIELD A C, et al. The TRANSPARENT TESTA GLABRA1 locus,which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis,encodes a WD40 repeat protein[J]. The Plant Cell,1999,11(7):1337-1350.
[103]PAYNE C T, ZHANG F, LLOYD A M. GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1[J]. Genetics,2000,156(3):1349-1362.
[104]AN X H,TIAN Y,CHEN K Q,et al. The apple WD40 protein MdTTG1 interacts with bHLH but not MYB proteins to regulate anthocyanin accumulation[J]. Journal of Plant Physiology,2012,169(7):710-717.
[105]SHAN X T, LI Y Q, YANG S, et al. A functional homologue of Arabidopsis TTG1 from Freesia interacts with bHLH proteins to regulate anthocyanin and proanthocyanidin biosynthesis in both Freesia hybrida and Arabidopsis thaliana[J]. Plant Physiology and Biochemistry,2019,141:60-72.
[106]DAVIES K M, SCHWINN K E. Transcriptional regulation of secondary metabolism[J]. Functional Plant Biology,2003,30(9):913-925.
[107]DARE A P, SCHAFFER R J, KUI L W, et al. Identification of a Cis-regulatory element by transient analysis of co-ordinately regulated genes[J]. Plant Methods,2008,4:17.
[108]HARTMANN U, SAGASSER M, MEHRTENS F, et al. Differential combinatorial interactions of Cis-acting elements recognized by R2R3-MYB BZIP and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes[J]. Plant Molecular Biology,2005,57(2):155-171.
[109]QI T C, SONG S S, REN Q C, et al. The Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate Jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana[J]. The Plant Cell,2011,23(5):1795-1814.
[110]张忍. MYB转录因子RcMYB1调控月季花青素生物合成[D]. 上海:上海师范大学,2023.
[111]GU Z Y, ZHU J, HAO Q, et al. A novel R2R3-MYB transcription factor contributes to petal blotch formation by regulating organ-specific expression of PsCHS in tree peony (Paeonia suffruticosa)[J]. Plant & Cell Physiology,2019,60(3):599-611.
[112]LI P H, CHEN B B, ZHANG G Y, et al. Regulation of anthocyanin and proanthocyanidin biosynthesis by Medicago truncatula bHLH transcription factor MtTT8[J]. New Phytologist,2016,210(3):905-921.
[113]SUN B M, ZHU Z S, CAO P R, et al. Purple foliage coloration in tea (Camellia sinensis L.) arises from activation of the R2R3-MYB transcription factor CsAN1[J]. Scientific Reports,2016,6:32534.
[114]ANSORGE W J. Next-generation DNA sequencing techniques[J]. New Biotechnology,2009,25(4):195-203.
[115]NAKATSUKA T, SUZUKI T, HARADA K, et al. Floral organ- and temperature-dependent regulation of anthocyanin biosynthesis in Cymbidium hybrid flowers[J]. Plant Science,2019,287:110173.
[116]SASAKI K, MITSUDA N, NASHIMA K, et al. Generation of expressed sequence tags for discovery of genes responsible for floral traits of Chrysanthemum morifolium by next-generation sequencing technology[J]. BMC Genomics,2017,18(1):683.
[117]ZHAO D Q, JIANG Y, NING C L, et al. Transcriptome sequencing of a chimaera reveals coordinated expression of anthocyanin biosynthetic genes mediating yellow formation in herbaceous peony (Paeonia lactiflora Pall.)[J]. BMC Genomics,2014,15(1):689.
[118]李婧. 三色堇(Viola×Wittrockiana Gams.)转录组测序及花色相关基因的发掘与表达验证[D]. 海口:海南大学,2016.
[119]QU Y, OU Z, YANG F S, et al. The study of transcriptome sequencing for flower coloration in different anthesis stages of alpine ornamental herb (Meconopsis ‘Lingholm’)[J]. Gene,2019,689:220-226.
[120]SHI Q Q, ZHOU L, WANG Y, et al. Transcriptomic analysis of Paeonia delavayi wild population flowers to identify differentially expressed genes involved in purple-red and yellow petal pigmentation[J]. PLoS One,2015,10(8):0135038.
[121]WANG N, SHU X C, ZHANG F J, et al. Comparative transcriptome analysis identifies key regulatory genes involved in anthocyanin metabolism during flower development in Lycoris radiata[J]. Frontiers in Plant Science,2021,12:761862.
[122]WANG Y, HUANG H, MA Y P, et al. Construction and de novo characterization of a transcriptome of Chrysanthemum lavandulifolium:analysis of gene expression patterns in floral bud emergence[J]. Plant Cell,Tissue and Organ Culture,2014,116(3):297-309.
[123]DE SOUZA CNDIDO E, DA ROCHA FERNANDES G, DE ALENCAR S A, et al. Shedding some light over the floral metabolism by arum lily (Zantedeschia aethiopica) spathe de novo transcriptome assembly[J]. PLoS One,2014,9(3):90487.
[124]陈家龙,侯蓉苗,朱建军,等. 木槿两个花色品种的花瓣转录组测序分析[J]. 分子植物育种,2022,20(8):2507-2516.
[125]FIEHN O. Metabolomics:the link between genotypes and phenotypes[J]. Plant Molecular Biology,2002,48(1/2):155-171.
[126]POTT D M, DURN-SORIA S, OSORIO S, et al. Combining metabolomic and transcriptomic approaches to assess and improve crop quality traits[J]. CABI Agriculture and Bioscience,2021,2:1.
[127]武美卿,廖易,陆顺教,等. 基于广泛靶向代谢组学技术的不同花色秋石斛中花青素差异分析[J]. 热带作物学报,2023,44(11):2167-2178.
[128]PARK C H, YEO H J, KIM N S, et al. Metabolomic profiling of the white,violet,and red flowers of Rhododendron schlippenbachii maxim[J]. Molecules,2018,23(4):827.
[129]SHEN J Z, ZOU Z W, ZHANG X Z, et al. Metabolic analyses reveal different mechanisms of leaf color change in two purple-leaf tea plant(Camellia sinensis L.)cultivars[J]. Horticulture Research,2018,5:7.
[130]SU M Y, DAMARIS R N, HU Z R, et al. Metabolomic analysis on the petal of‘Chen Xi’rose with light-induced color changes[J]. Plants,2021,10(10):2065.
[131]陈勇,李嘉杰,郑丹菁,等. 不同花色洋紫荆花瓣花青素和类黄酮物质组成和含量的变化[J]. 植物科学学报,2024,42(1):96-103.
[132]AI Y, ZHENG Q D, WANG M J, et al. Molecular mechanism of different flower color formation of Cymbidium ensifolium[J]. Plant Molecular Biology,2023,113(4/5):193-204.
[133]ZHAO Y, ZHOU W J, CHEN Y, et al. Metabolite analysis in Nymphaea‘Blue Bird’petals reveal the roles of flavonoids in color formation,stress amelioration,and bee orientation[J]. Plant Science,2021,312:111025.
[134]SAWADA Y, SATO M, OKAMOTO M, et al. Metabolome-based discrimination of Chrysanthemum cultivars for the efficient generation of flower color variations in mutation breeding[J]. Metabolomics,2019,15(9):118.
[135]桑贤东,杨晓慧,徐斌,等. 基于靶向代谢组学分析不同花色大红花花青素的差异[J]. 广东农业科学,2024,51(8):61-70.
[136]曹尚银,张秋明,朱志勇,等. 苹果花芽孕育蛋白质组学初步分析[J]. 中国农业科学,2007,40(10):2281-2288.
[137]李倩,毛少利,莫娇,等. 蛋白组学在植物中的研究[J]. 广西林业科学,2017,46(4):400-402.
[138]HUMPHERY-SMITH I, CORDWELL S J, BLACKSTOCK W P. Proteome research:complementarity and limitations with respect to the RNA and DNA worlds[J]. Electrophoresis,1997,18(8):1217-1242.
[139]吴欣欣,倪晓鹏,周泳,等. 基于蛋白质组学分析跳枝梅花色差异[J]. 北京林业大学学报,2015,37(增刊1):74-81.
[140]高乐. 红掌花色变异相关蛋白质组及基因差异表达的研究[D]. 苏州:苏州大学,2019.
[141]李林宝. 通过转录组和蛋白组揭示莲‘大洒锦’着色的分子机理[D]. 武汉:华中农业大学,2018.
[142]FAN Y, SUN L, SONG S L, et al. Integrated metabolome and transcriptome analysis of anthocyanin accumulation during the color formation of bicolor flowers in Eustoma grandiflorum[J]. Scientia Horticulturae,2023,314:111952.
[143]XIAO P, ZHANG H, LIAO Q L, et al. Insight into the molecular mechanism of flower color regulation in Rhododendron latoucheae franch:a multi-omics approach[J]. Plants,2023,12(16):2897.
[144]吴艳梅. 基于转录组和蛋白组学的华丽龙胆蓝色花呈色机理研究[D]. 昆明:昆明理工大学,2020.
[145]DENG J, SU M Y, ZHANG X Y, et al. Proteomic and metabolomic analyses showing the differentially accumulation of NnUFGT2 is involved in the petal red-white bicolor pigmentation in Lotus (Nelumbo nucifera)[J]. Plant Physiology and Biochemistry,2023,198:107675.
[146]杨娟. 基于多组学分析的燕子花花色变异分子机理[D]. 哈尔滨:东北林业大学,2023.