[1]樊勇,孙悦,录亿隆,等.观赏植物花青素合成调控机理及组学技术应用[J].江苏农业学报,2025,(04):810-822.[doi:doi:10.3969/j.issn.1000-4440.2025.04.019]
 FAN Yong,SUN Yue,LU Yilong,et al.Regulation mechanism of anthocyanin biosynthesis and application of omics techniques in ornamental plants[J].,2025,(04):810-822.[doi:doi:10.3969/j.issn.1000-4440.2025.04.019]
点击复制

观赏植物花青素合成调控机理及组学技术应用()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年04期
页码:
810-822
栏目:
综述
出版日期:
2025-04-30

文章信息/Info

Title:
Regulation mechanism of anthocyanin biosynthesis and application of omics techniques in ornamental plants
作者:
樊勇1孙悦2录亿隆1于春雷1李跃飞2孙文松1孙红梅2
(1.辽宁省农业科学院经济作物研究所,辽宁辽阳111000;2.沈阳农业大学园艺学院,辽宁沈阳110161;3.锦州医科大学食品与健康学院,辽宁锦州121001)
Author(s):
FAN Yong1SUN Yue2LU Yilong1YU Chunlei1LI Yuefei3SUN Wensong1SUN Hongmei2
(1.Liaoning Research Institute of Cash Crops, Liaoning Academy of Agricultural Sciences, Liaoyang 111000, China;2.Horticultural College of Shenyang Agricultural University, Shenyang 110161, China;3.School of Food and Health, Jinzhou Medical University, Jinzhou 121001, China)
关键词:
观赏植物花青素合成调控机理组学
Keywords:
ornamental plantsanthocyanin biosynthesisregulation mechanismomics
分类号:
S68;Q946.83+6
DOI:
doi:10.3969/j.issn.1000-4440.2025.04.019
文献标志码:
A
摘要:
花色是观赏植物的重要表型特征,对提升其商品价值具有重要意义。花青素是观赏植物花瓣着色的主要物质,花青素的合成除了受到环境因素影响外,主要受植物内在结构基因和转录因子的调控。近年来随着研究技术的发展,转录组学、代谢组学、蛋白质组学等得以广泛应用,为花青素合成机理的研究提供了新的方法和手段。本文结合国内外观赏植物花青素生物合成调控的研究成果,综述花青素的结构、生物合成途径、关键结构基因、转录因子以及组学在研究中的应用,阐明花青素合成相关基因的调控机理,以期为观赏植物花色分子改良和新奇品种选育提供理论参考。
Abstract:
Flower color is an important phenotypic characteristic of ornamental plants, which is of great significance in enhancing their commercial value. Anthocyanins are the main substances for the petal pigmentation of ornamental plants, and the anthocyanin biosynthesis is mainly regulated by the internal structural genes and transcription factors of plants, in addition to the influence of environment. In recent years, with the development of research technology, the widespread application of transcriptomics, metabolomics, and proteomics has provided new methods and means for the study of anthocyanin synthesis mechanism. Based on the research results of anthocyanin biosynthesis regulation in ornamental plants at home and abroad, we reviewed the structure of anthocyanins, biosynthetic pathways, key structural genes, transcription factors and the application of omics, and elaborated the regulatory mechanism of genes related to anthocyanin biosynthesis. The aim is to provide theoretical reference for the molecular improvement of flower color and the breeding of novel varieties of ornamental plants.

参考文献/References:

[1]YE S H, HUA S J, MA T T, et al. Genetic and multi-omics analyses reveal BnaA07.PAP2In-184-317 as the key gene conferring anthocyanin-based color in Brassica napus flowers[J]. Journal of Experimental Botany,2022,73(19):6630-6645.
[2]DAVIES K M, SCHWINN K E. Molecular biology and biotechnology of flower pigments[M]. Heidelberg:Springer Berlin Heidelberg,2010.
[3]SAIGO T, WANG T, WATANABE M, et al. Diversity of anthocyanin and proanthocyanin biosynthesis in land plants[J]. Current Opinion in Plant Biology,2020,55:93-99.
[4]乔廷廷,郭玲. 花青素来源、结构特性和生理功能的研究进展[J]. 中成药,2019,41(2):388-392.
[5]刘国元,方威,余春梅,等. 花青素调控植物花色的研究进展[J]. 安徽农业科学,2021,49(3):1-4,9.
[6]刘志祥,洪亚辉,莫爱华,等. 观赏植物花色分子遗传学及基因工程研究进展[J]. 湖南农业大学学报(自然科学版),2002,28(6):531-534.
[7]刘红,魏晓羽,马辉,等. 几种兰属地生种花瓣花色素组成分析[J]. 江苏农业学报,2022,38(6):1657-1677.
[8]高飞,柯燚,金韬,等. 光照对植物合成花色素苷的影响研究进展[J]. 中国农学通报,2014,30(34):6-10.
[9]LIU X F, TENG R P, XIANG L L, et al. Sucrose-delaying flower color fading associated with delaying anthocyanin accumulation decrease in cut Chrysanthemum[J]. PeerJ,2023,11:16520.
[10]NURAINI L, ANDO Y, KAWAI K, et al. Anthocyanin regulatory and structural genes associated with violet flower color of Matthiola incana[J]. Planta,2020,251(3):61.
[11]SUN Y, HU P L, JIANG Y N, et al. Integrated metabolome and transcriptome analysis of petal anthocyanin accumulation mechanism in Gloriosa superba ‘Rothschildiana’ during different flower development stages[J]. International Journal of Molecular Sciences,2023,24(20):15034.
[12]LIU Y F, ZHANG J H, YANG X H, et al. Diversity in flower colorations of Ranunculus asiaticus L. revealed by anthocyanin biosynthesis pathway in view of gene composition,gene expression patterns,and color phenotype[J]. Environmental Science and Pollution Research International,2019,26(14):13785-13794.
[13]WANG Z, LI X, CHEN M M, et al. Molecular and metabolic insights into anthocyanin biosynthesis for spot formation on Lilium leichtlinii var. maximowiczii flower petals[J]. International Journal of Molecular Sciences,2023,24(3):1844.
[14]MORITA Y, SAITO R, BAN Y, et al. Tandemly arranged Chalcone synthase a genes contribute to the spatially regulated expression of siRNA and the natural bicolor floral phenotype in Petunia hybrida[J]. Plant Journal,2012,70(5):739-749.
[15]CAMPANELLA J J, SMALLEY J V, DEMPSEY M E. A phylogenetic examination of the primary anthocyanin production pathway of the plantae[J]. Botanical Studies,2014,55(1):10.
[16]YANG Y, CUI B H, TAN Z W, et al. RNA sequencing and anthocyanin synthesis-related genes expression analyses in white-fruited Vaccinium uliginosum[J]. BMC Genomics,2018,19(1):930.
[17]TANAKA Y, BRUGLIERA F. Flower colour and cytochromes P450[C]. London: The Royal Society,2013.
[18]周惠,文锦芬,邓明华,等. 植物花青素生物合成相关基因研究进展[J]. 辣椒杂志,2011,9(4):1-7.
[19]GROTEWOLD E. The genetics and biochemistry of floral pigments[J]. Annual Review of Plant Biology,2006,57:761-780.
[20]TANAKA Y, OHMIYA A. Seeing is believing:engineering anthocyanin and carotenoid biosynthetic pathways[J]. Current Opinion in Biotechnology,2008,19(2):190-197.
[21]MATTIOLI R, FRANCIOSO A, MOSCA L, et al. Anthocyanins:a comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases[J]. Molecules,2020,25(17):3809.
[22]LEV-YADUN S, GOULD K S. Role of anthocyanins in plant defence[M]. New York: Springer,2008.
[23]ILK N, DING J, IHNATOWICZ A, et al. Natural variation for anthocyanin accumulation under high-light and low-temperature stress is attributable to the enhancer of Ag-4 2 (Hua2) locus in combination with production of anthocyanin pigment1 (pap1) and pap2[J]. New Phytologist,2015,206(1):422-435.
[24]HENRY-KIRK R A, PLUNKETT B, HALL M, et al. Solar UV light regulates flavonoid metabolism in apple (Malus × domestica)[J]. Plant,Cell & Environment,2018,41(3):675-688.
[25]KATAOKA I, BEPPU K. UV irradiance increases development of red skin color and anthocyanins in ‘Hakuho’ peach[J]. HortScience,2004,39(6):1234-1237.
[26]WINKEL-SHIRLEY B. Flavonoid biosynthesis. A colorful model for genetics,biochemistry,cell biology,and biotechnology[J]. Plant Physiology,2001,126(2):485-493.
[27]WEI Y Z, HU F C, HU G B, et al. Differential expression of anthocyanin biosynthetic genes in relation to anthocyanin accumulation in the pericarp of Litchi chinensis Sonn[J]. PLoS One,2011,6(4):19455.
[28]WANG R, MAO C J, MING F. PeMYB4L interacts with PeMYC4 to regulate anthocyanin biosynthesis in Phalaenopsis orchid[J]. Plant Science,2022,324:111423.
[29]KOES R, VERWEIJ W, QUATTROCCHIO F. Flavonoids:a colorful model for the regulation and evolution of biochemical pathways[J]. Trends in Plant Science,2005,10(5):236-242.
[30]CHOPRA S, HOSHINO A, BODDU J, et al. Flavonoid pigments as tools in molecular genetics[M]. New York:Springer,2006.
[31]李琴琴,董山榕,罗建让,等. 卵叶牡丹PqDFR和PqANS及启动子克隆与功能分析[J]. 园艺学报,2024,51(6):1256-1272.
[32]BOSS P K, DAVIES C, ROBINSON S P. Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv Shiraz grape berries and the implications for pathway regulation[J]. Plant Physiology,1996,111(4):1059-1066.
[33]FALCONE FERREYRA M L, RIUS S P, CASATI P. Flavonoids:biosynthesis,biological functions,and biotechnological applications[J]. Frontiers in Plant Science,2012,3:222.
[34]MORITA Y, SAITOH M, HOSHINO A, et al. Isolation of cDNAs for R2R3-MYB,bHLH and WDR transcriptional regulators and identification of c and ca mutations conferring white flowers in the Japanese morning glory[J]. Plant & Cell Physiology,2006,47(4):457-470.
[35]ALLAN A C, HELLENS R P, LAING W A. MYB transcription factors that colour our fruit[J]. Trends in Plant Science,2008,13(3):99-102.
[36]NUGROHO L H, VERBERNE M C, VERPOORTE R. Activities of enzymes involved in the phenylpropanoid pathway in constitutively salicylic acid-producing tobacco plants[J]. Plant Physiology and Biochemistry,2002,40(9):755-760.
[37]CHON S U, BOO H O, HEO B G, et al. Anthocyanin content and the activities of polyphenol oxidase,peroxidase and phenylalanine ammonia-lyase in lettuce cultivars[J]. International Journal of Food Sciences and Nutrition,2012,63(1):45-48.
[38]李林菊,冯志熙,李新艺,等. 滇水金凤PAL基因的克隆与表达分析[J]. 农业生物技术学报,2023,31(11):2272-2283.
[39]WANG H Q, ARAKAWA O, MOTOMURA Y. Influence of maturity and bagging on the relationship between anthocyanin accumulation and phenylalanine ammonia-lyase(PAL)activity in‘Jonathan’apples[J]. Postharvest Biology and Technology,2000,19(2):123-128.
[40]HE F, MU L, YAN G L, et al. Biosynthesis of anthocyanins and their regulation in colored grapes[J]. Molecules,2010,15(12):9057-9091.
[41]SUN W, MENG X Y, LIANG L J, et al. Molecular and biochemical analysis of Chalcone Synthase from Freesia hybrid in flavonoid biosynthetic pathway[J]. PLoS One,2015,10(3):0119054.
[42]HUANG J, ZHAO X, ZHANG Y, et al. Chalcone-synthase-encoding RdCHS1 is involved in flavonoid biosynthesis in Rhododendron delavayi[J]. Molecules,2024,29(8):1822.
[43]WANG Y, DOU Y, WANG R, et al. Molecular characterization and functional analysis of Chalcone synthase from Syringa oblata Lindl. in the flavonoid biosynthetic pathway[J]. Gene,2017,635:16-23.
[44]NABAVI S M, DUNJA , TOMCZYK M, et al. Flavonoid biosynthetic pathways in plants:versatile targets for metabolic engineering[J]. Biotechnology Advances,2020,38:107316.
[45]MORITA Y, TAKAGI K, FUKUCHI-MIZUTANI M, et al. A Chalcone isomerase-like protein enhances flavonoid production and flower pigmentation[J]. Plant Journal,2014,78(2):294-304.
[46]RYAN K G, SWINNY E E, WINEFIELD C, et al. Flavonoids and UV photoprotection in Arabidopsis mutants[J]. Journal of Biosciences,2001,56(9/10):745-754.
[47]DAS P K, SHIN D H, CHOI S B, et al. Cytokinins enhance sugar-induced anthocyanin biosynthesis in Arabidopsis[J]. Molecules and Cells,2012,34(1):93-102.
[48]MA L L, JIA W J, DUAN Q, et al. Heterologous expression of Platycodon grandiflorus PgF3′5′H modifies flower color pigmentation in tobacco[J]. Genes,2023,14(10):1920.
[49]FINN R D, COGGILL P, EBERHARDT R Y, et al. The pfam protein families database:towards a more sustainable future[J]. Nucleic Acids Research,2016,44(1):279-285.
[50]LIM S H, YOU M K, KIM D H, et al. RNAi-mediated suppression of dihydroflavonol 4-reductase in tobacco allows fine-tuning of flower color and flux through the flavonoid biosynthetic pathway[J]. Plant Physiology and Biochemistry,2016,109:482-490.
[51]NI J, RUAN R J, WANG L J, et al. Functional and correlation analyses of dihydroflavonol-4-reductase genes indicate their roles in regulating anthocyanin changes in Ginkgo biloba[J]. Industrial Crops and Products,2020,152:112546.
[52]韩科厅,赵莉,唐杏姣,等. 菊花花青素苷合成关键基因表达与花色表型的关系[J]. 园艺学报,2012,39(3):516-524.
[53]ZAN W X, WU Q K, DOU S H, et al. Analysis of flower color diversity revealed the co-regulation of cyanidin and peonidin in the red petals coloration of Rosa rugosa[J]. Plant Physiology and Biochemistry,2024,216:109126.
[54]XIE D Y, JACKSON L A, COOPER J D, et al. Molecular and biochemical analysis of two cDNA clones encoding dihydroflavonol-4-reductase from Medicago truncatula[J]. Plant Physiology,2004,134(3):979-994.
[55]WILMOUTH R C, TURNBULL J J, WELFORD R W D, et al. Structure and mechanism of anthocyanidin synthase from Arabidopsis thaliana[J]. Structure,2002,10(1):93-103.
[56]FORKMANN G, MARTENS S. Metabolic engineering and applications of flavonoids[J]. Current Opinion in Biotechnology,2001,12(2):155-160.
[57]平怀磊,郭雪,余潇,等. 滇牡丹PdANS的克隆、表达及与花青素含量的相关性[J]. 生物技术通报,2023,39(3):206-217.
[58]AHARONI A, DE VOS C H, WEIN M, et al. The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco[J]. Plant Journal,2001,28(3):319-332.
[59]XU F, LI L L, ZHANG W W, et al. Isolation,characterization,and function analysis of a flavonol synthase gene from Ginkgo biloba[J]. Molecular Biology Reports,2012,39(3):2285-2296.
[60]LUO P, NING G G, WANG Z, et al. Disequilibrium of flavonol synthase and dihydroflavonol-4-reductase expression associated tightly to white vs. red color flower formation in plants[J]. Frontiers in Plant Science,2016,6:1257.
[61]HOLTON T A, BRUGLIERA F, TANAKA Y. Cloning and expression of flavonol synthase from Petunia hybrida[J]. Plant Journal,1993,4(6):1003-1010.
[62]NIELSEN K, DEROLES S C, MARKHAM K R, et al. Antisense flavonol synthase alters copigmentation and flower color in Lisianthus[J]. Molecular Breeding,2002,9(4):217-229.
[63]SAITO K, YAMAZAKI M. Biochemistry and molecular biology of the late-stage of biosynthesis of anthocyanin:lessons from Perilla frutescens as a model plant[J]. New Phytologist,2002,155(1):9-23.
[64]SPRINGOB K, NAKAJIMA J I, YAMAZAKI M, et al. Recent advances in the biosynthesis and accumulation of anthocyanins[J]. Natural Product Reports,2003,20(3):288-303.
[65]MORITA Y, ISHIGURO K, TANAKA Y, et al. Spontaneous mutations of the UDP-glucose:flavonoid 3-O-glucosyltransferase gene confers pale- and dull-colored flowers in the Japanese and common morning glories[J]. Planta,2015,242(3):575-587.
[66]TERRIER N, TORREGROSA L, AGEORGES A, et al. Ectopic expression of VvMybPA2 promotes proanthocyanidin biosynthesis in grapevine and suggests additional targets in the pathway[J]. Plant Physiology,2009,149(2):1028-1041.
[67]LLOYD A, BROCKMAN A, AGUIRRE L, et al. Advances in the MYB-bHLH-WD repeat (MBW) pigment regulatory model:addition of a WRKY factor and co-option of an anthocyanin MYB for betalain regulation[J]. Plant & Cell Physiology,2017,58(9):1431-1441.
[68]TO K Y, WANG C K. Molecular breeding of fower color[M]. London:Global Science Books,2006.
[69]MA D W, PETER CONSTABEL C. MYB repressors as regulators of phenylpropanoid metabolism in plants[J]. Trends in Plant Science,2019,24(3):275-289.
[70]BUER C S, IMIN N, DJORDJEVIC M A. Flavonoids:new roles for old molecules[J]. Journal of Integrative Plant Biology,2010,52(1):98-111.
[71]ROMERO I, FUERTES A, BENITO M J, et al. More than 80 R2R3-MYB regulatory genes in the genome of Arabidopsis thaliana[J]. Plant Journal,1998,14(3):273-284.
[72]RABINOWICZ P D, BRAUN E L, WOLFE A D, et al. Maize R2R3 Myb genes:sequence analysis reveals amplification in the higher plants[J]. Genetics,1999,153(1):427-444.
[73]CAO Y L, JIA H M, XING M Y, et al. Genome-wide analysis of MYB gene family in Chinese bayberry (Morella rubra) and identification of members regulating flavonoid biosynthesis[J]. Frontiers in Plant Science,2021,12:691384.
[74]RICARDO PREZ-DAZ J, PREZ-DAZ J, MADRID-ESPINOZA J, et al. New member of the R2R3-MYB transcription factors family in grapevine suppresses the anthocyanin accumulation in the flowers of transgenic tobacco[J]. Plant Molecular Biology,2016,90(1/2):63-76.
[75]DUBOS C, STRACKE R, GROTEWOLD E, et al. MYB transcription factors in Arabidopsis[J]. Trends in Plant Science,2010,15(10):573-581.
[76]ZHANG Q, HAO R J, XU Z D, et al. Isolation and functional characterization of a R2R3-MYB regulator of Prunus mume anthocyanin biosynthetic pathway[J]. Plant Cell,Tissue and Organ Culture,2017,131(3):417-429.
[77]LIU Q, LI S J, LI T J, et al. The characterization of R2R3-MYB genes in water lily Nymphaea colorata reveals the involvement of NcMYB25 in regulating anthocyanin synthesis[J]. Plants,2024,13(21):2990.
[78]ZHANG B, XU X J, HUANG R W, et al. CRISPR/Cas9-mediated targeted mutation reveals a role for AN4 rather than DPL in regulating venation formation in the Corolla tube of Petunia hybrida[J]. Horticulture Research,2021,8(1):116.
[79]ZHANG X P, XU Z D, YU X Y, et al. Identification of two novel R2R3-MYB transcription factors,PsMYB114L and PsMYB12L,related to anthocyanin biosynthesis in Paeonia suffruticosa[J]. International Journal of Molecular Sciences,2019,20(5):1055.
[80]HSU C C, CHEN Y Y, TSAI W C, et al. Three R2R3-MYB transcription factors regulate distinct floral pigmentation patterning in Phalaenopsis spp.[J]. Plant Physiology,2015,168(1):175-191.
[81]HONG Y, LI M L, DAI S L. Ectopic expression of multiple Chrysanthemum (Chrysanthemum × morifolium) R2R3-MYB transcription factor genes regulates anthocyanin accumulation in tobacco[J]. Genes,2019,10(10):777.
[82]YOSHIDA K, MA D W, PETER CONSTABEL C. The MYB182 protein down-regulates proanthocyanidin and anthocyanin biosynthesis in poplar by repressing both structural and regulatory flavonoid genes[J]. Plant Physiology,2015,167(3):693-710.
[83]ANWAR M, WANG G Q, WU J C, et al. Ectopic overexpression of a novel R2R3-MYB,NtMYB2 from Chinese Narcissus represses anthocyanin biosynthesis in tobacco[J]. Molecules,2018,23(4):781.
[84]ALBERT N W, DAVIES K M, LEWIS D H, et al. A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots[J]. The Plant Cell,2014,26(3):962-980.
[85]HU X M, LIANG Z H, SUN T X, et al. The R2R3-MYB transcriptional repressor TgMYB4 negatively regulates anthocyanin biosynthesis in tulips (Tulipa gesneriana L.)[J]. International Journal of Molecular Sciences,2024,25(1):563.
[86]FELLER A, YUAN L, GROTEWOLD E. The BIF domain in plant bHLH proteins is an ACT-like domain[J]. The Plant Cell,2017,29(8):1800-1802.
[87]FELLER A, MACHEMER K, BRAUN E L, et al. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors[J]. Plant Journal,2011,66(1):94-116.
[88]HICHRI I, BARRIEU F, BOGS J, et al. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway[J]. Journal of Experimental Botany,2011,62(8):2465-2483.
[89]LI C H, QIU J, DING L, et al. Anthocyanin biosynthesis regulation of DhMYB2 and DhbHLH1 in Dendrobium hybrids petals[J]. Plant Physiology and Biochemistry,2017,112:335-345.
[90]HEIM M A, JAKOBY M, WERBER M, et al. The basic helix-loop-helix transcription factor family in plants:a genome-wide study of protein structure and functional diversity[J]. Molecular Biology and Evolution,2003,20(5):735-747.
[91]NESI N, DEBEAUJON I, JOND C, et al. The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques[J]. The Plant Cell,2000,12(10):1863-1878.
[92]DENG J, LI J J, SU M Y, et al. A bHLH gene NnTT8 of Nelumbo nucifera regulates anthocyanin biosynthesis[J]. Plant Physiology and Biochemistry,2021,158:518-523.
[93]SPELT C, QUATTROCCHIO F, MOL J N, et al. Anthocyanin1 of Petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes[J]. The Plant Cell,2000,12(9):1619-1632.
[94]ZHAO R, SONG X X, YANG N, et al. Expression of the subgroup IIIf bHLH transcription factor CpbHLH1 from Chimonanthus praecox (L.) in transgenic model plants inhibits anthocyanin accumulation[J]. Plant Cell Reports,2020,39(7):891-907.
[95]ZHAO P C, LI X X, JIA J T, et al. BHLH92 from sheepgrass acts as a negative regulator of anthocyanin/proanthocyandin accumulation and influences seed dormancy[J]. Journal of Experimental Botany,2019,70(1):269-284.
[96]NEER E J, SCHMIDT C J, NAMBUDRIPAD R, et al. The ancient regulatory-protein family of WD-repeat proteins[J]. Nature,1994,371(6495):297-300.
[97]SMITH T F, GAITATZES C, SAXENA K, et al. The WD repeat:a common architecture for diverse functions[J]. Trends in Biochemical Sciences,1999,24(5):181-185.
[98]MISHRA A K, PURANIK S, PRASAD M. Structure and regulatory networks of WD40 protein in plants[J]. Journal of Plant Biochemistry and Biotechnology,2012,21(1):32-39.
[99]CAREY C C, STRAHLE J T, SELINGER D A, et al. Mutations in the pale aleurone color1 regulatory gene of the Zea mays anthocyanin pathway have distinct phenotypes relative to the functionally similar TRANSPARENT TESTA GLABRA1 gene in Arabidopsis thaliana[J]. The Plant Cell,2004,16(2):450-464.
[100]YAO P F, ZHAO H X, LUO X P, et al. Fagopyrum tataricum FtWD40 functions as a positive regulator of anthocyanin biosynthesis in transgenic tobacco[J]. Journal of Plant Growth Regulation,2017,36(3):755-765.
[101]DE VETTEN N, QUATTROCCHIO F, MOL J, et al. The an11 locus controlling flower pigmentation in Petunia encodes a novel WD-repeat protein conserved in yeast,plants,and animals[J]. Genes & Development,1997,11(11):1422-1434.
[102]WALKER A R, DAVISON P A, BOLOGNESI-WINFIELD A C, et al. The TRANSPARENT TESTA GLABRA1 locus,which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis,encodes a WD40 repeat protein[J]. The Plant Cell,1999,11(7):1337-1350.
[103]PAYNE C T, ZHANG F, LLOYD A M. GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1[J]. Genetics,2000,156(3):1349-1362.
[104]AN X H,TIAN Y,CHEN K Q,et al. The apple WD40 protein MdTTG1 interacts with bHLH but not MYB proteins to regulate anthocyanin accumulation[J]. Journal of Plant Physiology,2012,169(7):710-717.
[105]SHAN X T, LI Y Q, YANG S, et al. A functional homologue of Arabidopsis TTG1 from Freesia interacts with bHLH proteins to regulate anthocyanin and proanthocyanidin biosynthesis in both Freesia hybrida and Arabidopsis thaliana[J]. Plant Physiology and Biochemistry,2019,141:60-72.
[106]DAVIES K M, SCHWINN K E. Transcriptional regulation of secondary metabolism[J]. Functional Plant Biology,2003,30(9):913-925.
[107]DARE A P, SCHAFFER R J, KUI L W, et al. Identification of a Cis-regulatory element by transient analysis of co-ordinately regulated genes[J]. Plant Methods,2008,4:17.
[108]HARTMANN U, SAGASSER M, MEHRTENS F, et al. Differential combinatorial interactions of Cis-acting elements recognized by R2R3-MYB BZIP and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes[J]. Plant Molecular Biology,2005,57(2):155-171.
[109]QI T C, SONG S S, REN Q C, et al. The Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate Jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana[J]. The Plant Cell,2011,23(5):1795-1814.
[110]张忍. MYB转录因子RcMYB1调控月季花青素生物合成[D]. 上海:上海师范大学,2023.
[111]GU Z Y, ZHU J, HAO Q, et al. A novel R2R3-MYB transcription factor contributes to petal blotch formation by regulating organ-specific expression of PsCHS in tree peony (Paeonia suffruticosa)[J]. Plant & Cell Physiology,2019,60(3):599-611.
[112]LI P H, CHEN B B, ZHANG G Y, et al. Regulation of anthocyanin and proanthocyanidin biosynthesis by Medicago truncatula bHLH transcription factor MtTT8[J]. New Phytologist,2016,210(3):905-921.
[113]SUN B M, ZHU Z S, CAO P R, et al. Purple foliage coloration in tea (Camellia sinensis L.) arises from activation of the R2R3-MYB transcription factor CsAN1[J]. Scientific Reports,2016,6:32534.
[114]ANSORGE W J. Next-generation DNA sequencing techniques[J]. New Biotechnology,2009,25(4):195-203.
[115]NAKATSUKA T, SUZUKI T, HARADA K, et al. Floral organ- and temperature-dependent regulation of anthocyanin biosynthesis in Cymbidium hybrid flowers[J]. Plant Science,2019,287:110173.
[116]SASAKI K, MITSUDA N, NASHIMA K, et al. Generation of expressed sequence tags for discovery of genes responsible for floral traits of Chrysanthemum morifolium by next-generation sequencing technology[J]. BMC Genomics,2017,18(1):683.
[117]ZHAO D Q, JIANG Y, NING C L, et al. Transcriptome sequencing of a chimaera reveals coordinated expression of anthocyanin biosynthetic genes mediating yellow formation in herbaceous peony (Paeonia lactiflora Pall.)[J]. BMC Genomics,2014,15(1):689.
[118]李婧. 三色堇(Viola×Wittrockiana Gams.)转录组测序及花色相关基因的发掘与表达验证[D]. 海口:海南大学,2016.
[119]QU Y, OU Z, YANG F S, et al. The study of transcriptome sequencing for flower coloration in different anthesis stages of alpine ornamental herb (Meconopsis ‘Lingholm’)[J]. Gene,2019,689:220-226.
[120]SHI Q Q, ZHOU L, WANG Y, et al. Transcriptomic analysis of Paeonia delavayi wild population flowers to identify differentially expressed genes involved in purple-red and yellow petal pigmentation[J]. PLoS One,2015,10(8):0135038.
[121]WANG N, SHU X C, ZHANG F J, et al. Comparative transcriptome analysis identifies key regulatory genes involved in anthocyanin metabolism during flower development in Lycoris radiata[J]. Frontiers in Plant Science,2021,12:761862.
[122]WANG Y, HUANG H, MA Y P, et al. Construction and de novo characterization of a transcriptome of Chrysanthemum lavandulifolium:analysis of gene expression patterns in floral bud emergence[J]. Plant Cell,Tissue and Organ Culture,2014,116(3):297-309.
[123]DE SOUZA CNDIDO E, DA ROCHA FERNANDES G, DE ALENCAR S A, et al. Shedding some light over the floral metabolism by arum lily (Zantedeschia aethiopica) spathe de novo transcriptome assembly[J]. PLoS One,2014,9(3):90487.
[124]陈家龙,侯蓉苗,朱建军,等. 木槿两个花色品种的花瓣转录组测序分析[J]. 分子植物育种,2022,20(8):2507-2516.
[125]FIEHN O. Metabolomics:the link between genotypes and phenotypes[J]. Plant Molecular Biology,2002,48(1/2):155-171.
[126]POTT D M, DURN-SORIA S, OSORIO S, et al. Combining metabolomic and transcriptomic approaches to assess and improve crop quality traits[J]. CABI Agriculture and Bioscience,2021,2:1.
[127]武美卿,廖易,陆顺教,等. 基于广泛靶向代谢组学技术的不同花色秋石斛中花青素差异分析[J]. 热带作物学报,2023,44(11):2167-2178.
[128]PARK C H, YEO H J, KIM N S, et al. Metabolomic profiling of the white,violet,and red flowers of Rhododendron schlippenbachii maxim[J]. Molecules,2018,23(4):827.
[129]SHEN J Z, ZOU Z W, ZHANG X Z, et al. Metabolic analyses reveal different mechanisms of leaf color change in two purple-leaf tea plant(Camellia sinensis L.)cultivars[J]. Horticulture Research,2018,5:7.
[130]SU M Y, DAMARIS R N, HU Z R, et al. Metabolomic analysis on the petal of‘Chen Xi’rose with light-induced color changes[J]. Plants,2021,10(10):2065.
[131]陈勇,李嘉杰,郑丹菁,等. 不同花色洋紫荆花瓣花青素和类黄酮物质组成和含量的变化[J]. 植物科学学报,2024,42(1):96-103.
[132]AI Y, ZHENG Q D, WANG M J, et al. Molecular mechanism of different flower color formation of Cymbidium ensifolium[J]. Plant Molecular Biology,2023,113(4/5):193-204.
[133]ZHAO Y, ZHOU W J, CHEN Y, et al. Metabolite analysis in Nymphaea‘Blue Bird’petals reveal the roles of flavonoids in color formation,stress amelioration,and bee orientation[J]. Plant Science,2021,312:111025.
[134]SAWADA Y, SATO M, OKAMOTO M, et al. Metabolome-based discrimination of Chrysanthemum cultivars for the efficient generation of flower color variations in mutation breeding[J]. Metabolomics,2019,15(9):118.
[135]桑贤东,杨晓慧,徐斌,等. 基于靶向代谢组学分析不同花色大红花花青素的差异[J]. 广东农业科学,2024,51(8):61-70.
[136]曹尚银,张秋明,朱志勇,等. 苹果花芽孕育蛋白质组学初步分析[J]. 中国农业科学,2007,40(10):2281-2288.
[137]李倩,毛少利,莫娇,等. 蛋白组学在植物中的研究[J]. 广西林业科学,2017,46(4):400-402.
[138]HUMPHERY-SMITH I, CORDWELL S J, BLACKSTOCK W P. Proteome research:complementarity and limitations with respect to the RNA and DNA worlds[J]. Electrophoresis,1997,18(8):1217-1242.
[139]吴欣欣,倪晓鹏,周泳,等. 基于蛋白质组学分析跳枝梅花色差异[J]. 北京林业大学学报,2015,37(增刊1):74-81.
[140]高乐. 红掌花色变异相关蛋白质组及基因差异表达的研究[D]. 苏州:苏州大学,2019.
[141]李林宝. 通过转录组和蛋白组揭示莲‘大洒锦’着色的分子机理[D]. 武汉:华中农业大学,2018.
[142]FAN Y, SUN L, SONG S L, et al. Integrated metabolome and transcriptome analysis of anthocyanin accumulation during the color formation of bicolor flowers in Eustoma grandiflorum[J]. Scientia Horticulturae,2023,314:111952.
[143]XIAO P, ZHANG H, LIAO Q L, et al. Insight into the molecular mechanism of flower color regulation in Rhododendron latoucheae franch:a multi-omics approach[J]. Plants,2023,12(16):2897.
[144]吴艳梅. 基于转录组和蛋白组学的华丽龙胆蓝色花呈色机理研究[D]. 昆明:昆明理工大学,2020.
[145]DENG J, SU M Y, ZHANG X Y, et al. Proteomic and metabolomic analyses showing the differentially accumulation of NnUFGT2 is involved in the petal red-white bicolor pigmentation in Lotus (Nelumbo nucifera)[J]. Plant Physiology and Biochemistry,2023,198:107675.
[146]杨娟. 基于多组学分析的燕子花花色变异分子机理[D]. 哈尔滨:东北林业大学,2023.

备注/Memo

备注/Memo:
收稿日期:2024-11-07基金项目:国家现代农业产业体系建设项目(CARS-21-06)作者简介:樊勇(1984-),男,内蒙古丰镇人,博士,助理研究员,主要从事观赏植物和中药材种质资源创新和新品选育工作。(E-mail)fanyongzh@126.com通讯作者:孙文松,(E-mail)sunwensong12@126.com;孙红梅(E-mail)hmbh@sina.com
更新日期/Last Update: 2025-05-26