[1]许乐乐,黄倩敏,李永芹,等.健康广藿香与患病广藿香根际土壤微生物群落的结构[J].江苏农业学报,2025,(04):702-714.[doi:doi:10.3969/j.issn.1000-4440.2025.04.009]
 XU Lele,HUANG Qianmin,LI Yongqin,et al.Microbial community structure in rhizosphere soil of healthy and diseased patchouli (Pogostemon cablin)[J].,2025,(04):702-714.[doi:doi:10.3969/j.issn.1000-4440.2025.04.009]
点击复制

健康广藿香与患病广藿香根际土壤微生物群落的结构()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年04期
页码:
702-714
栏目:
耕作栽培·资源环境
出版日期:
2025-04-30

文章信息/Info

Title:
Microbial community structure in rhizosphere soil of healthy and diseased patchouli (Pogostemon cablin)
作者:
许乐乐黄倩敏李永芹王锂韫
(岭南师范学院生命科学与技术学院,广东湛江524048)
Author(s):
XU LeleHUANG QianminLI YongqinWANG Liyun
(School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, China)
关键词:
广藿香根际土壤微生物群落高通量测序病害防治
Keywords:
Pogostemon cablinrhizosphere soilmicrobial communityhigh-throughput sequencingdisease prevention and control
分类号:
S154.3
DOI:
doi:10.3969/j.issn.1000-4440.2025.04.009
文献标志码:
A
摘要:
为探究健康广藿香与患病广藿香根际土壤中微生物群落的结构组成和多样性,本研究利用高通量测序技术分别对健康广藿香和患病广藿香根际土壤微生物群落进行测序及功能预测分析。结果显示,广藿香患病后,根际土壤中全磷含量显著升高(P<0.05)。从健康广藿香和患病广藿香根际土壤中共得到801个真菌操作分类单元(OTU)和3 477个细菌OTU,患病广藿香根际土壤真菌数量明显增加,细菌数量则有所下降。健康广藿香和患病广藿香根际土壤中微生物群落门和属的组成没有变化,但部分门和属的相对丰度却存在差异。患病后,在门水平上,酸杆菌门(Acidobacteria)和疣微菌门(Verrucomicrobia)细菌、子囊菌门(Ascomycota)真菌相对丰度显著下降,厚壁菌门(Firmicutes)细菌、担子菌门(Basidiomycota)真菌相对丰度则显著升高;在属水平上,节杆菌属(Paenarthrobacter)、罗尔斯通菌属(Ralstonia)和异样根瘤菌属(Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium)细菌及裸节菌属(Talaromyces)真菌的相对丰度显著增加,柄孢壳属(Podospora)、Conlarium属和节丛孢属(Arthrobotrys)真菌的相对丰度显著下降。相关性分析结果表明,健康广藿香与患病广藿香根际微生物门类与土壤环境因子的相关性表现出明显差异,患病广藿香中土壤理化指标与更多细菌门类的相对丰度具有相关性,而健康植株则表现为土壤理化指标与更多真菌门类的相对丰度具有相关性。FAPROTAX功能预测结果表明,植物病原体、尿素分解、芳烃降解和碳氢化合物降解等4类细菌功能相对丰度在健康广藿香与患病广藿香根际土壤间具有明显差异;FUNGuild功能预测结果显示,健康广藿香和患病广藿香根际土壤真菌营养类型病理-腐生-共生营养型和共生营养型相对丰度差异显著,患病植株植物病原菌功能相对丰度显著提升。功能预测结果表明,广藿香病害的发生与病原微生物相对丰度的改变存在一定联系。本研究结果可为广藿香病害的防治提供一定的理论依据。
Abstract:
To explore the structure and diversity of the rhizosphere soil microbial community of healthy and diseased Pogostemon cablin (patchouli), high-throughput sequencing technology was employed to sequence and conduct functional prediction analyses on the microbial communities in the rhizosphere soil of both healthy and diseased patchouli plants. The results indicated that after patchouli plants were diseased, the total phosphorus content in the rhizosphere soil increased significantly (P<0.05). A total of 801 fungal operational taxonomic units (OTUs) and 3 477 bacterial OTUs were identified in the rhizosphere soil of both healthy and diseased patchouli plants. The number of fungi in the rhizosphere soil of diseased patchouli plants increased significantly, while the number of bacteria decreased. The composition of microbial phyla and genera in the rhizosphere soil of healthy and diseased patchouli plants remained unchanged, but differences were observed in the relative abundance of some phyla and genera. After the plants were diseased, at the phylum level, the relative abundances of Acidobacteria and Verrucomicrobia bacteria, as well as Ascomycota fungi decreased significantly, while the relative abundances of Firmicutes bacteria and Basidiomycota fungi increased significantly. At the genus level, the relative abundances of Paenarthrobacter, Ralstonia, and Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium bacteria, as well as Talaromyces fungi increased significantly, while the relative abundances of Podospora, Conlarium and Arthrobotrys fungi decreased significantly. Correlation analysis results showed that there was an obvious difference in the correlation between the rhizosphere microbial phyla of healthy and diseased patchouli plants and soil environmental factors. In diseased patchouli plants, soil physicochemical indicators were correlated with the relative abundance of more bacterial phyla, while in healthy plants, soil physicochemical indicators were correlated with the relative abundance of more fungal phyla. FAPROTAX functional prediction results indicated that there were obvious differences in the relative abundance of four types of bacterial functions, including plant pathogen, ureolysis, aromatic hydrocarbon degradation and hydrocarbon degradation, between the rhizosphere soil of healthy and diseased patchouli plants. FUNGuild functional prediction results showed that there were significant differences in the relative abundances of pathological-saprophytic-symbiotic and symbiotic nutritional types of fungal nutritional types in the rhizosphere soil of healthy and diseased patchouli plants. The relative abundance of plant pathogens in diseased plants increased significantly. The functional prediction results suggested that there was a certain correlation between the occurrence of patchouli disease and changes in the relative abundance of pathogenic microorganisms. The findings of this study can provide a theoretical basis for the prevention and control of patchouli diseases.

参考文献/References:

[1]许家其,张海红. 广藿香作用的研究进展[J]. 神经药理学报,2020,10(3):27-32.
[2]SZEWCZUK M A, ZYCH S, OSTER N, et al. Activity of patchouli and tea tree essential oils against staphylococci isolated from pyoderma in dogs and their synergistic potential with gentamicin and enrofloxacin[J]. Animals,2023,13(8):1279.
[3]陈欣,陈巧兰,吴泽吟,等. 气相色谱-高分辨质谱联用法分析广藿香挥发油成分[J]. 农业与技术,2022,42(22):19-22.
[4]LIU F, DENG C, CAO W, et al. Phytochemicals of Pogostemon cablin (blanco) Benth. aqueous extract:their xanthine oxidase inhibitory activities[J]. Biomedicine & Pharmacotherapy,2017,89:544-548.
[5]JING W G, LIN X Y, CHU L I, et al. Anti-inflammatory mechanism of the non-volatile ingredients originated from Guanghuoxiang based on high performance liquid chromatography-heated electron spray ionization-high resolution mass spectroscope and cell metabolomics[J]. Journal of Traditional Chinese Medicine,2024,44(2):260-267.
[6]林小桦,贺红. 广藿香种质资源的研究现状及存在问题[J]. 现代中药研究与实践,2005,19(4):60-62.
[7]顾艳,梅瑜,徐世强,等. 广藿香种质资源及栽培技术研究进展[J]. 热带作物学报,2022,43(8):1595-1603.
[8]FANG Y X, LI J L, LI X F, et al. Macrophomina vaccinii causes a basal stem and root rot of patchouli (Pogostemon cablin) in China[J]. Plant Disease,2022,106(3):1067.
[9]沈瑞清,张萍,康萍芝,等. 根际微生物与植物病害关系的研究进展[J]. 宁夏农林科技,2006,47(5):46-47,61.
[10]吕柏辰,孙海,钱佳奇,等. 药用植物根系分泌物与根际微生物相互作用及其在中药材生态种植中的应用[J]. 中国中药杂志,2024,49(8):2128-2137.
[11]贺璐,马杰,傅淋,等. 卷丹百合根腐病植株与健康植株根际土壤真菌群落结构差异[J]. 西南农业学报,2023,36(11):2419-2425.
[12]席娇,徐腾起,刘玉涛,等. Streptomyces rochei D74菌剂对向日葵、列当及其根际微生物的影响[J]. 微生物学报,2023,63(2):745-759.
[13]杨娅琳,陈健鑫,武自强,等. 油茶根腐病根际土壤和根系内细菌群落结构及多样性[J]. 经济林研究,2023,41(2):69-82.
[14]SUZUKI T, KITAZAWA Y, MOTOHASHI T N, et al. First report of bacterial brown root rot in pea sprouts (Pisum sativum L.) caused by a Pseudomonas species[J]. Journal of General Plant Pathology,2023,89(6):347-351.
[15]荆文光,李楚,赵小亮,等. 广藿香和土藿香研究现状及相关建议[J]. 中国现代中药,2023,25(6):1342-1349.
[16]齐乐辉,王知斌,孟永海,等. 中药广藿香有效成分及药理作用研究进展[J]. 化学工程师,2018,32(2):49-50,56.
[17]鲍士旦. 土壤农化分析[M]. 3版. 北京:中国农业出版社,2000.
[18]林亚,蔡瑜,胡凡,等. 大黄根腐病与土壤营养及微生物群落组成的相关性研究[J]. 西南大学学报(自然科学版),2024,46(3):70-83.
[19]崔佩佩,武爱莲,王劲松,等. 不同施肥处理对高粱根际土壤微生物功能多样性的影响[J]. 华北农学报,2018,33(5):195-202.
[20]黄颖博,罗凡,龚雪蛟,等. 有机肥对土壤微生物群落特征影响的研究进展[J]. 中国农学通报,2023,39(3):88-96.
[21]CHEN J H, YUAN C Y, ZHANG Y, et al. Dredging wastewater discharge from shrimp ponds affects mangrove soil physical-chemical properties and enzyme activities[J]. Science of the Total Environment,2024,926:171916.
[22]于威,依艳丽,杨蕾. 土壤中钙、氮含量对番茄枯萎病抗性的影响[J]. 中国土壤与肥料,2016(1):134-140.
[23]郑世燕,丁伟,杜根平,等. 增施矿质营养对烟草青枯病的控病效果及其作用机理[J]. 中国农业科学,2014,47(6):1099-1110.
[24]高正锋,白羽祥,朱宣全,等. 烟草根黑腐病不同发病程度与土壤养分及微生物群落的关系[J]. 南方农业学报,2022,53(9):2478-2486.
[25]张桐毓,勾颖,李琪,等. 人参锈腐病对人参品质和土壤相关因子的影响研究[J]. 中国农业科技导报,2024,26(3):124-133.
[26]方圆,王娓,姚晓东,等. 我国北方温带草地土壤微生物群落组成及其环境影响因素[J]. 北京大学学报(自然科学版),2017,53(1):142-150.
[27] 朱文娟,任月梅,杨忠,等. 谷子土壤微生物群落结构及功能预测分析[J]. 作物杂志,2023(5):170-178.
[28]郑天骄,王梦姣. 不同蓝莓根际微生物群落结构多样性及其差异[J]. 北方园艺,2022(14):76-86.
[29]高鑫媛,赵红玲,白茹玥,等. 北苍术根腐病植株根际土壤真菌群落多样性分析[J]. 西南农业学报,2022,35(4):812-821.
[30]ESLAMINEJAD P, HEYDARI M, KAKHKI F V, et al. Plant species and season influence soil physicochemical properties and microbial function in a semi-arid woodland ecosystem[J]. Plant and Soil,2020,456(1):43-59.
[31]DA SILVA W L, YANG K T, PETTIS G S, et al. Flooding-associated soft rot of sweetpotato storage roots caused by distinct Clostridium isolates[J]. Plant Disease,2019,103(12):3050-3056.
[32]FIRA D, DIMKIC I, BERIC T, et al. Biological control of plant pathogens by Bacillus species[J]. Journal of Biotechnology,2018,285:44-55.
[33]尤敏,管福来,赵乃昕,等. 一种条件致病节杆菌的分离与鉴定[J]. 潍坊医学院学报,2003,25(2):96-98.
[34]周大祥,龙泉洲,李彦杰,等. 致病性与无致病性茄科罗尔斯通氏菌转录组测序与分析[J]. 微生物学杂志,2021,41(5):80-88.
[35]林春英,李希来,张玉欣,等. 黄河源区高寒沼泽湿地土壤微生物群落结构对不同退化的响应[J]. 环境科学,2021,42(8):3971-3984.
[36]赵萌,印春生,厉成伟,等. Miseq测序分析围垦后海三棱藨草湿地土壤微生物群落多样性的季节变化[J]. 上海海洋大学学报,2018,27(5):718-727.
[37]班瑞娟. 燕麦坚黑穗病病原菌分离鉴定及其防治技术研究[D]. 呼和浩特:内蒙古农业大学,2023.
[38]孙靖娥. 贵州不同寄主的锈病病原菌多样性研究[D]. 贵阳:贵州大学,2023.
[39]谢洁,任慧爽. 一株桑树内生拮抗菌新种柄孢壳菌及其应用:CN111592988B[P]. 2022-02-18.
[40]KUO C Y, TAY R J, LIN H C, et al. The nematode-trapping fungus Arthrobotrys oligospora detects prey pheromones via G protein-coupled receptors[J]. Nature Microbiology,2024,9(7):1738-1751.
[41]曾先锋,孙钰晨,谢学文,等. 滋养节杆菌S17的分离鉴定及其对黄瓜促生能力研究[J]. 中国生物防治学报,2024,40(1):178-185.
[43]周杰,谢泰祥,刘江枫,等. 野生建兰根系共生真菌群落结构及生物学功能[J]. 微生物学报,2021,61(7):2136-2153.
[44] QIN X J, WU H M, CHEN J, et al. Transcriptome analysis of Pseudostellaria heterophylla in response to the infection of pathogenic Fusarium oxysporum[J]. BMC Plant Biology,2017,17(1):155.
[45]黄伟雄,安振宇,方仁,等. 感染根腐病番荔枝根际土壤微生物群落多样性分析[J]. 西南农业学报,2021,34(8):1623-1629.
[46]刘和. 芳香烃化合物的微生物降解及基因工程菌的构建[D]. 杭州:浙江大学,2004.
[47]李超敏,高永超,杨合同,等. 碳氢化合物的污染及降解菌的研究概况[J]. 山东科学,2007,20(4):72-75,82.

相似文献/References:

[1]王振楠,杨美玲,刘鸯,等.丛枝菌根真菌对红花生长及根际土壤微环境的影响[J].江苏农业学报,2016,(04):904.[doi:10.3969/j.issn.100-4440.2016.04.030]
 WANG Zhen-nan,YANG Mei-ling,LIU Yang,et al.Effects of arbuscular mycorrhization on the growth of safflower and the microenvironment of rhizosphere soil[J].,2016,(04):904.[doi:10.3969/j.issn.100-4440.2016.04.030]
[2]徐筋燕,何晓兰,邵明灿,等.不同连作年限栝楼根际土壤微生物群落多样性分析[J].江苏农业学报,2023,(05):1140.[doi:doi:10.3969/j.issn.1000-4440.2023.05.006]
 XU Jin-yan,HE Xiao-lan,SHAO Ming-can,et al.Analysis of microbial community diversity in rhizosphere soil of continuous cropping Trichosanthes kirilowii[J].,2023,(04):1140.[doi:doi:10.3969/j.issn.1000-4440.2023.05.006]
[3]王兴松,李恩星,杨诗瀚,等.根结线虫病对烟草植株根际土壤微生物群落及其功能的影响[J].江苏农业学报,2024,(06):993.[doi:doi:10.3969/j.issn.1000-4440.2024.06.005]
 WANG Xingsong,LI Enxing,YANG Shihan,et al.Effects of root-knot nematode disease on microbial community and function in rhizosphere soil of tobacco plants[J].,2024,(04):993.[doi:doi:10.3969/j.issn.1000-4440.2024.06.005]
[4]胡子贤,许慧,邓鹏飞,等.结香患根腐病植株根际土壤微生物群落组成与多样性[J].江苏农业学报,2024,(12):2254.[doi:doi:10.3969/j.issn.1000-4440.2024.12.008]
 HU Zixian,XU Hui,DENG Pengfei,et al.Composition and diversity of microbial community in rhizosphere soil of Edgeworthia chrysantha Lindl. with root rot disease[J].,2024,(04):2254.[doi:doi:10.3969/j.issn.1000-4440.2024.12.008]
[5]王籽懿,韩伟,金鸿飚,等.高寒黑土区不同轮作模式对马铃薯根际土壤细菌群落结构与功能的影响[J].江苏农业学报,2025,(02):286.[doi:doi:10.3969/j.issn.1000-4440.2025.02.009]
 WANG Ziyi,HAN Wei,JIN Hongbiao,et al.Effects of different crop rotation modes on the structure and function of bacterial communities in potato rhizosphere soil in high-altitude black soil areas[J].,2025,(04):286.[doi:doi:10.3969/j.issn.1000-4440.2025.02.009]

备注/Memo

备注/Memo:
收稿日期:2024-07-30基金项目:湛江市科技计划项目(2022A01054);广东省教育厅项目(2021KCXTD039)作者简介:许乐乐(1981-),男,广东湛江人,博士,助理研究员,研究方向为生物计算与计算机仿生学。(Tel)18934029616;(E-mail)xulees@163.com通讯作者:李永芹,(E-mail)lyongqin@163.com;王锂韫,(E-mail)wly@lingnan.edu.cn
更新日期/Last Update: 2025-05-26