[1]刘羽佳,卓来凤,马立钦,等.铁皮石斛DoTCP2基因克隆及非生物胁迫下的表达分析[J].江苏农业学报,2025,(03):588-598.[doi:doi:10.3969/j.issn.1000-4440.2025.03.018]
 LIU Yujia,ZHUO Laifeng,MA Liqin,et al.Cloning and expression analysis of DoTCP2 gene in Dendrobium officinale under abiotic stress[J].,2025,(03):588-598.[doi:doi:10.3969/j.issn.1000-4440.2025.03.018]
点击复制

铁皮石斛DoTCP2基因克隆及非生物胁迫下的表达分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年03期
页码:
588-598
栏目:
园艺
出版日期:
2025-03-31

文章信息/Info

Title:
Cloning and expression analysis of DoTCP2 gene in Dendrobium officinale under abiotic stress
作者:
刘羽佳12卓来凤2马立钦2黄秋妮2张勇2张颖智3李翔12刘博婷12
(1.广东省粵北食药资源利用与保护重点实验室/韶关学院,广东韶关512005;2.韶关学院生物与农业学院,广东韶关512005;3.韶关学院食品学院,广东韶关512005)
Author(s):
LIU Yujia12ZHUO Laifeng2MA Liqin2HUANG Qiuni2ZHANG Yong2ZHANG Yingzhi3LI Xiang12LIU Boting12
(1.Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northerrn Region/Shaoguan University, Shaoguan 512005, China;2.College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China;3.College of Food, Shaoguan University, Shaoguan 512005, China)
关键词:
铁皮石斛TCP 转录因子DoTCP2基因非生物胁迫表达模式
Keywords:
Dendrobium officinaleTCP transcription factorDoTCP2 geneabiotic stressexpression profile
分类号:
Q785
DOI:
doi:10.3969/j.issn.1000-4440.2025.03.018
文献标志码:
A
摘要:
TCP 转录因子是植物特有的一类调控生长发育和逆境胁迫反应的重要调控因子。为探究铁皮石斛(Dendrobium officinale)TCP2基因(DoTCP2)的表达特性和抗逆响应能力,通过同源克隆技术从广东丹霞铁皮石斛品种的叶组织中成功分离出DoTCP2基因,并对该基因序列进行生物信息学分析及表达模式探究。结果显示,DoTCP2(GenBank登录号:PP534463)cDNA全长1 122 bp,位于第7号染色体,含有4个外显子和3个内含子,编码长度为373个氨基酸的多肽链,与参考序列(序列号:LOC110114709)进行比对分析,发现存在4个碱基差异,其中3个为同义替换。DoTCP2蛋白理论相对分子量为40 600,理论等电点为8.94,为亲水性稳定蛋白质,具有TCP 保守结构域,定位于细胞核,无信号肽和跨膜结构域,含有46个磷酸化位点。DoTCP2与鼓槌石斛(Dendrobium chrysotoxum)TCP蛋白序列同源性高达97.87%,且遗传距离最近。DoTCP2基因具有组织表达特异性,在根组织中的相对表达量极显著高于其他组织,可能在根发育和营养物质的吸收以及运输等过程中发挥作用。DoTCP2基因在低温胁迫处理6 h时的相对表达量极显著上调(P<0.01),暗示DoTCP2可能在低温胁迫响应中发挥重要作用;在模拟干旱和外源脱落酸(ABA)处理下,DoTCP2基因的相对表达量呈现下降趋势,且在处理24 h后相对表达量最低,与处理前差异达到极显著水平(P<0.01),推测该基因可能通过ABA 信号通路在调控铁皮石斛应答干旱胁迫中发挥负调控作用。本研究结果可为深入探究DoTCP2基因的抗逆功能及其在植物应对非生物胁迫响应中的潜在作用机制提供前期研究基础。
Abstract:
TCP transcription factors are a plant-specific group of regulators that play a vital role in governing growth, development, and responses to environmental stress. To investigate the expression characteristics and stress response capabilities of the TCP2 gene (DoTCP2) from Dendrobium officinale, the gene was successfully isolated from leaf tissues of the Guangdong Danxia variety of Dendrobium officinale using homology cloning. Subsequent bioinformatics analysis and expression pattern research were conducted. The results showed that the cDNA of DoTCP2 (GenBank accession number was PP534463) was 1 122 bp in full length, located on chromosome seven, consisted of four exons and three introns, and encoded a polypeptide chain of 373 amino acids. Compared to the reference sequence (accession number: LOC110114709), there were four nucleotide differences, of which three were synonymous substitutions. The theoretical relative molecular weight of the DoTCP2 protein was 40 600, and its theoretical isoelectric point was 8.94. It was a hydrophilic and stable protein with a conserved TCP domain, localized in the nucleus, without signal peptides or transmembrane regions, and contained 46 phosphorylation sites. The DoTCP2 protein shared 97.87% sequence homology with the TCP protein of Dendrobium chrysotoxum and exhibited the closest genetic distance. DoTCP2 exhibited tissue-specific expression, with highly significantly higher relative expression levels in root tissues compared to other tissues, suggesting its potential role in root development, nutrient absorption, and transport processes. The relative expression of DoTCP2 was highly significantly upregulated after six hours of cold stress treatment (P<0.01), indicating that DoTCP2 might play an important role in the response to cold stress. Under simulated drought treatment and exogenous abscisic acid (ABA) treatment, the relative expression of DoTCP2 showed a downward trend. The lowest expression levels were observed after 24 hours of treatment, with highly significant differences compared to the untreated levels (P<0.01). The results suggest that DoTCP2 may act as a negative regulator in the response to drought stress through the ABA signaling pathway. The findings can provide a foundation for further investigation into the stress-resistant functional characteristics of the DoTCP2 gene and its potential mechanisms in plant responses to abiotic stress.

参考文献/References:

[1]MAHAJAN S, TUTEJA N. Cold,salinity and drought stresses:an overview[J]. Archives of Biochemistry and Biophysics,2005,444(2):139-158.
[2]LI Y X, YANG Z R, ZHANG Y Y, et al. The roles of HD-ZIP proteins in plant abiotic stress tolerance[J]. Frontiers in Plant Science,2022,13:1027071.
[3]李子义,贺子航,卢惠君,等. 拟南芥AtUNE12基因的耐盐功能初探[J]. 植物研究,2020,40(2):257-265.
[4]JOO H, BAEK W, LIM C W, et al. Post-translational modifications of bZIP transcription factors in abscisic acid signaling and drought responses[J]. Current Genomics,2021,22(1):4-15.
[5]雷其冬,孙旭东,徐慧妮. 转录因子TCP4参与植物生长发育和抗逆调节研究进展[J]. 华北农学报,2021,36(增刊1):210-214.
[6]JIAO M Y, ZHANG J, CHENG W W, et al. Identification of the AP2/ERF transcription factor family of Eleutherococcus senticosus and its expression correlation with drought stress[J]. 3 Biotech,2023,13(7):259.
[7]WANG H L, CHENG X, YIN D M, et al. Advances in the research on plant WRKY transcription factors responsive to external stresses[J]. Current Issues in Molecular Biology,2023,45(4):2861-2880.
[8]JIA Y Q, NIU Y N, ZHAO H M, et al. Hierarchical transcription factor and regulatory network for drought response in Betula platyphylla[J/OL]. Horticulture Research,2022,9
[2024-07-15]. https://doi.org/10.1093/hr/uhac040.
[9]董舒超,凌嘉怡,赵丽萍,等. 转录因子调控番茄抗旱性研究进展[J]. 江苏农业科学,2023,51(9):9-16.
[10]CHALLA K R, AGGARWAL P, NATH U. Activation of YUCCA5 by the transcription factor TCP4 integrates developmental and environmental signals to promote hypocotyl elongation in Arabidopsis[J]. The Plant Cell,2016,28(9):2117-2130.
[11]CUBAS P, LAUTER N, DOEBLEY J, et al. The TCP domain:a motif found in proteins regulating plant growth and development[J]. The Plant Journal,1999,18(2):215-222.
[12]MARTN-TRILLO M, CUBAS P. TCP genes:a family snapshot ten years later[J]. Trends in Plant Science,2010,15(1):31-39.
[13]KOSUGI S, OHASHI Y. DNA binding and dimerization specificity and potential targets for the TCP protein family[J]. The Plant Journal,2002,30(3):337-348.
[14]NAVAUD O, DABOS P, CARNUS E, et al. TCP transcription factors predate the emergence of land plants[J]. Journal of Molecular Evolution,2007,65(1):23-33.
[15]RIECHMANN J L, HEARD J, MARTIN G, et al. Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes[J]. Science,2000,290(5499):2105-2110.
[16]PARAPUNOVA V, BUSSCHER M, BUSSCHER-LANGE J, et al. Identification,cloning and characterization of the tomato TCP transcription factor family[J]. BMC Plant Biology,2014,14:157.
[17]MA X D, MA J C, FAN D, et al. Genome-wide identification of TCP family transcription factors from Populus euphratica and their involvement in leaf shape regulation[J]. Scientific Reports,2016,6:32795.
[18]温贝贝,罗勇,刘冬敏,等. 茶树TCP转录因子的鉴定与表达分析[J]. 园艺学报,2019,46(12):2369-2382.
[19]DONG Z Y, HAO Y P, ZHAO Y Y ,et al. Genome-wide analysis of the TCP transcription factor gene family in pepper (Capsicum annuum L. )[J]. Plants,2024,13(5):641.
[20]谭政委,郭水柱,苏小雨,等. 全基因组水平金银花TCP基因家族的鉴定及表达模式分析[J]. 中草药,2024,55(5):1665-1676.
[21]LING L, ZHANG W R, AN Y M, et al. Genome-wide analysis of the TCP transcription factor genes in five legume genomes and their response to salt and drought stresses[J]. Functional & Integrative Genomics,2020,20(4):537-550.
[22]QI X Y, QU Y X, GAO R, et al. The heterologous expression of a Chrysanthemum nankingense TCP transcription factor blocks cell division in yeast and Arabidopsis thaliana[J]. International Journal of Molecular Sciences,2019,20(19):4848.
[23]VIOLA I L, CAMOIRANO A, GONZALEZ D H. Redox-dependent modulation of anthocyanin biosynthesis by the TCP transcription factor TCP15 during exposure to high light intensity conditions in Arabidopsis[J]. Plant Physiology,2016,170(1):74-85.
[24]AN J X, GUO Z X, GOU X P, et al. TCP1 positively regulates the expression of DWF4 in Arabidopsis thaliana[J]. Plant Signaling & Behavior,2011,6(8):1117-1118.
[25]雷豆,苏周,吴雨,等. 番茄SlTCP7转录因子的克隆及表达分析[J]. 分子植物育种,2019,17(5):1446-1453.
[26]朱姗姗. 水稻转录因子PCF7的功能研究[D]. 重庆:重庆大学,2015.
[27]YANG L, TEIXEIRA P J P L, BISWAS S, et al. Pseudomonas syringae type Ⅲ effector HopBB1 promotes host transcriptional repressor degradation to regulate phytohormone responses and virulence[J]. Cell Host & Microbe,2017,21(2):156-168.
[28]CHEN J J, LI L Z. Multiple regression analysis reveals microRNA regulatory networks in Oryza sativa under drought stress[J]. International Journal of Genomics,2018,2018(1):9395261.
[29]刘春浩,梁楠松,于磊,等. 水曲柳TCP4转录因子克隆及胁迫和激素下的表达分析[J]. 北京林业大学学报,2017,39(6):22-31.
[30]ZHANG L, LI C, YANG D N, et al. Genome-wide analysis of the TCP transcription factor genes in Dendrobium catenatum Lindl[J]. International Journal of Molecular Sciences,2021,22(19):10269.
[31]刘羽佳,理雅,姜雅涵,等. 铁皮石斛蔗糖合酶DoSUS2基因克隆与表达分析[J]. 农业生物技术学报,2024,32(3):546-558.
[32]理雅,刘博婷,赖思慧,等. 铁皮石斛DcbHLH14基因克隆及表达分析[J]. 福建农业学报,2022,37(9):1145-1155.
[33]LIU Y J, LIU B T, LUO K F, et al. Genomic identification and expression analysis of acid invertase (AINV) gene family in Dendrobium officinale Kimura et Migo[J]. BMC Plant Biology,2024,24(1):396.
[34]崔迪,孟丽君,葛秀丽,等. 铁皮石斛DobHLH51基因克隆及表达特性分析[J]. 山东农业科学,2024,56(5):9-18.
[35]冯建英,李立芹,李佳皓,等. 马铃薯TCP家族转录因子鉴定与表达模式分析[J]. 基因组学与应用生物学,2021,40(增刊2):2756-2764.
[36]唐羽翔,高旭,崔亚宁,等. 植物TCP转录因子研究进展[J]. 科学通报,2022,67(33):3964-3975.
[37]HOU J, XU H M, FAN D, et al. MiR319a-targeted PtoTCP20 regulates secondary growth via interactions with PtoWOX4 and PtoWND6 in Populus tomentosa[J]. New Phytologist,2020,228(4):1354-1368.
[38]乌凤章,王贺新,徐国辉,等. 木本植物低温胁迫生理及分子机制研究进展[J]. 林业科学,2015,51(7):116-128.
[39]TIAN C, ZHAI L S, ZHU W J, et al. Characterization of the TCP gene family in Chrysanthemum nankingense and the role of CnTCP4 in cold tolerance[J]. Plants,2022,11(7):936.
[40]MUKHOPADHYAY P, TYAGI A K. OsTCP19 influences developmental and abiotic stress signaling by modulating ABI4-mediated pathways[J]. Scientific Reports,2015,5:9998.
[41]DING S C, CAI Z Z, DU H W, et al. Genome-wide analysis of TCP family genes in Zea mays L. identified a role for ZmTCP42 in drought tolerance[J]. International Journal of Molecular Sciences,2019,20(11):2762.

相似文献/References:

[1]赵桂华,刘国华,赵楠.中国铁皮石斛茎腐病的病原鉴定[J].江苏农业学报,2016,(04):780.[doi:10.3969/j.issn.100-4440.2016.04.011]
 ZHAO Gui-hua,LIU Guo-hua,ZHAO Nan.Pathogen identification of stem rot disease in Dendrobium officinale of China[J].,2016,(03):780.[doi:10.3969/j.issn.100-4440.2016.04.011]
[2]闻婧,李倩中,李淑顺,等.不同 LED 光源对铁皮石斛生长和叶绿素荧光参数的影响[J].江苏农业学报,2016,(04):910.[doi:10.3969/j.issn.100-4440.2016.04.031]
 WEN Jing,LI Qian-zhong,LI Shu-shun,et al.Growth and chlorophyll fluorescence parameters of Dendrobium officinale exposed to different LED light qualities[J].,2016,(03):910.[doi:10.3969/j.issn.100-4440.2016.04.031]
[3]周玉飞,罗晓青,王晓敏,等.喀斯特地区珍稀濒危铁皮石斛野外回归试验[J].江苏农业学报,2022,38(03):798.[doi:doi:10.3969/j.issn.1000-4440.2022.03.027]
 ZHOU Yu-fei,LUO Xiao-qing,WANG Xiao-min,et al.Re-introduction experiment of rare and endangered Dendrobium officinale in karst area[J].,2022,38(03):798.[doi:doi:10.3969/j.issn.1000-4440.2022.03.027]

备注/Memo

备注/Memo:
收稿日期:2024-08-14基金项目:广东省基础与应用基础研究基金面上项目(2024A1515013167);广东省普通高校重点领域专项(2022ZDZX4044、2024ZDZX2023);韶关学院科技计划项目(240823118037510);韶关学院科研重点项目(SZ2023KJ19)作者简介:刘羽佳(1984-),女,黑龙江哈尔滨人,博士,副教授,研究方向为植物逆境生理与分子生物学。(E-mail)liuyj1206@sgu.edu.cn通讯作者:李翔,(E-mail)xli89@sgu.edu.cn;刘博婷,(E-mail)liuboting5566@163.com
更新日期/Last Update: 2025-04-27