[1]张地莲,肖云英,李婉,等.褪黑素对镉胁迫条件下毛桃幼苗生长及镉含量的影响[J].江苏农业学报,2025,(03):573-579.[doi:doi:10.3969/j.issn.1000-4440.2025.03.016]
 ZHANG Dilian,XIAO Yunying,LI Wan,et al.Effects of melatonin on the growth and cadmium contents of peach seedlings under cadmium stress[J].,2025,(03):573-579.[doi:doi:10.3969/j.issn.1000-4440.2025.03.016]
点击复制

褪黑素对镉胁迫条件下毛桃幼苗生长及镉含量的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年03期
页码:
573-579
栏目:
园艺
出版日期:
2025-03-31

文章信息/Info

Title:
Effects of melatonin on the growth and cadmium contents of peach seedlings under cadmium stress
作者:
张地莲12肖云英2李婉2周万木2张晓丽2林立金2唐懿2胡容平1
(1.四川省农业科学院植物保护研究所/农业部西南作物有害生物综合治理重点实验室,四川成都610066;2.四川农业大学园艺学院,四川成都611130)
Author(s):
ZHANG Dilian12XIAO Yunying2LI Wan2ZHOU Wanmu2ZHANG Xiaoli2LIN Lijin2TANG Yi2HU Rongping1
(1.Institute of Plant Protection, Sichuan Academy of Agricultural Sciences/Key Laboratory of Integrated Crop Pest Management in Southwest China, Ministry of Agriculture, Chengdu 610066, China;2.College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China)
关键词:
褪黑素镉胁迫镉积累毛桃生长
Keywords:
melatonincadmium stresscadmium accumulationpeachgrowth
分类号:
S662.1;X505;S482.8
DOI:
doi:10.3969/j.issn.1000-4440.2025.03.016
文献标志码:
A
摘要:
为明确褪黑素对镉胁迫下毛桃生长的影响,本研究拟分析1 mg/L镉胁迫下施用不同浓度褪黑素(50 μmol/L、100 μmol/L、150 μmol/L、200 μmol/L)和不施褪黑素处理对毛桃幼苗生长及镉含量的影响。结果表明,1 mg/L镉胁迫能降低毛桃幼苗生物量、株高和部分光合色素含量,提高抗氧化酶活性。镉胁迫下,150 μmol/L和200 μmol/L褪黑素处理的毛桃幼苗生物量和株高显著高于不施褪黑素处理,其中,150 μmol/L褪黑素处理的效果最好,毛桃幼苗根系生物量、地上部生物量及株高分别较不施褪黑素处理提高14.74%、23.48%和5.35%。100 μmol/L、150 μmol/L和200 μmol/L褪黑素处理的毛桃幼苗叶绿素a含量和叶绿素b含量均高于不施褪黑素处理,150 μmol/L褪黑素处理的类胡萝卜素含量高于不施褪黑素处理。不同浓度褪黑素处理的毛桃幼苗超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)活性均低于不施褪黑素处理。50 μmol/L褪黑素处理的毛桃幼苗根系和地上部镉含量分别较不施褪黑素处理降低23.87%和34.39%,其他浓度褪黑素处理的毛桃幼苗根系和地上部镉含量则比不施褪黑素处理有所增加或无显著差异。因此,1 mg/L镉胁迫下,高浓度(150 μmol/L和200 μmol/L)褪黑素处理能够促进毛桃生长,而50 μmol/L褪黑素处理能够降低毛桃的镉积累量。
Abstract:
In order to clarify the effect of melatonin on the growth of peach under cadmium stress, an experiment was designed to analyze the effects of different concentrations of melatonin (50 μmol/L, 100 μmol/L, 150 μmol/L, 200 μmol/L) and no melatonin treatment on the growth and cadmium content of peach seedlings under 1 mg/L cadmium stress. The results showed that 1 mg/L cadmium stress could reduce the biomass, plant height and partial photosynthetic pigment content of peach seedlings, and increase the activities of antioxidant enzymes. Under cadmium stress, the biomass and plant height of peach seedlings treated with 150 μmol/L and 200 μmol/L melatonin were significantly higher than those without melatonin treatment. Among them, the effect of 150 μmol/L melatonin treatment was the best, and the root biomass, aboveground biomass and plant height of peach seedlings were 14.74%, 23.48% and 5.35% higher than those without melatonin treatment, respectively. The chlorophyll a and chlorophyll b contents of peach seedlings treated with 100 μmol/L, 150 μmol/L and 200 μmol/L melatonin were higher than those of no melatonin treatment, and the carotenoid content of 150 μmol/L melatonin treatment was higher than that of no melatonin treatment. The activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in peach seedlings treated with different concentrations of melatonin were lower than those without melatonin treatment. The cadmium contents in roots and shoots of peach seedlings treated with 50 μmol/L melatonin were 23.87% and 34.39% lower than those without melatonin treatment, respectively. The cadmium contents in roots and shoots of peach seedlings treated with other concentrations of melatonin were increased or weren’t significantly different from those without melatonin treatment. Therefore, under 1 mg/L cadmium stress, high concentrations (150 μmol/L and 200 μmol/L) of melatonin treatments can promote the growth of peach, while 50 μmol/L melatonin treatment can reduce the cadmium accumulation of peach.

参考文献/References:

[1]ADAMS S V, PASSARELLI M N, NEWCOMB P A. Cadmium exposure and cancer mortality in the Third National Health and Nutrition Examination Survey cohort[J]. Occupational and Environmental Medicine,2012,69(2):153-156.
[2]LIU L W, LI W, SONG W P, et al. Remediation techniques for heavy metal-contaminated soils:principles and applicability[J]. Science of the Total Environment,2018,633:206-219.
[3]赵慧,何博,王铁宇,等. 我国南方典型城市土壤重金属污染特征及源汇关系分析[J]. 环境科学学报,2019,39(7):2231-2239.
[4]林立金,廖明安. 果园土壤重金属镉污染与植物修复[M]. 成都:四川大学出版社,2020.
[5]ASGHER M, KHAN M I R, ANJUM N A, et al. Minimising toxicity of cadmium in plants—role of plant growth regulators[J]. Protoplasma,2015,252(2):399-413.
[6]TAN D X, MANCHESTER L C, ESTEBAN-ZUBERO E, et al. Melatonin as a potent and inducible endogenous antioxidant:synthesis and metabolism[J]. Molecules,2015,20(10):18886-18906.
[7]和秋兰,张航,王正维,等. 外源褪黑素对低温胁迫下马铃薯幼苗抗氧化系统的影响[J]. 华北农学报,2022,37(1):103-111.
[8]齐晓媛,王文莉,胡少卿,等. 外源褪黑素对高温胁迫下菊花光合和生理特性的影响[J]. 应用生态学报,2021,32(7):2496-2504.
[9]张明聪,何松榆,秦彬,等. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报,2021,47(9):1791-1805.
[10]聂萌恩,宁娜,张一中,等. 褪黑素对盐胁迫下高粱种子萌发的缓解效应及生理机制[J]. 种子,2023,42(4):31-40,63.
[11]YANG H, FANG R, LUO L, et al. Potential roles of melatonin in mitigating the heavy metals toxicity in horticultural plants[J]. Scientia Horticulturae,2023,321:112269.
[12]SUN S S, LIU A R, LI Z, et al. Anthocyanin synthesis is critical for melatonin-induced chromium stress tolerance in tomato[J]. Journal of Hazardous Materials,2023,453:131456.
[13]XU L, ZHANG F, TANG M J, et al. Melatonin confers cadmium tolerance by modulating critical heavy metal chelators and transporters in radish plants[J]. Journal of Pineal Research,2020,69(1):e12659.
[14]WANG T, SONG J X, LIU Z, et al. Melatonin alleviates cadmium toxicity by reducing nitric oxide accumulation and IRT1 expression in Chinese cabbage seedlings[J]. Environmental Science and Pollution Research,2021,28(12):15394-15405.
[15]WANG M, DUAN S H, ZHOU Z C, et al. Foliar spraying of melatonin confers cadmium tolerance in Nicotiana tabacum L.[J]. Ecotoxicology and Environmental Safety,2019,170:68-76.
[16]ZHANG J R, LI D X, WEI J, et al. Melatonin alleviates aluminum-induced root growth inhibition by interfering with nitric oxide production in Arabidopsis[J]. Environmental and Experimental Botany,2019,161:157-165.
[17] XIANG G, LIN L J, LIAO M A, et al. Effects of melatonin on cadmium accumulation in the accumulator plant Perilla frutescens[J]. Chemistry and Ecology, 2019, 35(6): 553-562.
[18]TANG Y, LIN L J, XIE Y D, et al. Melatonin affects the growth and cadmium accumulation of Malachium aquaticum and Galinsoga parviflora[J]. International Journal of Phytoremediation,2018,20(4):295-300.
[19]LIN L J, LI J H, CHEN F B, et al. Effects of melatonin on the growth and cadmium characteristics of Cyphomandra betacea seedlings[J]. Environmental Monitoring and Assessment,2018,190(3):119.
[20]徐迎澳,肖元松,宁斯逸,等. 桃砧木耐涝性研究进展[J]. 落叶果树,2021,53(6):38-43.
[21]汤民. 果园土壤Pb、Cd污染及其原位钝化研究[D]. 重庆:西南大学,2012.
[22]刘纳,高琴,钟攀,等. 桃中铅镉含量对人体健康风险评价[J]. 农产品加工,2019(12):66-67,73.
[23]关伟,王有年,师光禄,等. 两个桃树品种对土壤中不同镉水平的响应[J]. 生态学杂志,2007,26(6):859-864.
[24]熊庆娥. 植物生理学实验教程[M]. 成都:四川科学技术出版社,2003.
[25]鲍士旦. 土壤农化分析[M]. 3版. 北京:中国农业出版社,2000.
[26]RASTMANESH F, MOORE F, KESHAVARZI B. Speciation and phytoavailability of heavy metals in contaminated soils in Sarcheshmeh area,Kerman Province,Iran[J]. Bulletin of Environmental Contamination and Toxicology,2010,85(5):515-519.
[27]ROMBEL-BRYZEK A, BOJARSKI B, SWISLOWSKI P, et al. The effects of cadmium on selected oxidative stress parameters and the content of photosynthetic pigments in cucumber Cucumis sativus L.[J]. Journal of Trace Elements in Medicine and Biology,2024,84:127463.
[28]REHMAN M Z, RIZWAN M, GHAFOOR A, et al. Effect of inorganic amendments for in situ stabilization of cadmium in contaminated soils and its phyto-availability to wheat and rice under rotation[J]. Environmental Science and Pollution Research, 2015,22(21):16897-16906.
[29]VACULK M, PAVLOVIC A, LUX A. Silicon alleviates cadmium toxicity by enhanced photosynthetic rate and modified bundle sheath’s cell chloroplasts ultrastructure in maize[J]. Ecotoxicology and Environmental Safety,2015,120:66-73.
[30]HDIJI H, DJEBALI W, BELKADHI A, et al. Impact of long-term cadmium exposure on mineral content of Solanum lycopersicum plants:consequences on fruit production[J]. South African Journal of Botany,2015,97:176-181.
[31] PRIYADARSHINI B, SUJATHA B. Cadmium effects on photosynthetic pigments of germinating seedlings of pigeonpea (Cajanus cajan L.)[J]. International Journal of Advanced Research,2014,2(12): 483-492.
[32]裴红宾,张永清,上官铁梁. 根区温度胁迫对小麦抗氧化酶活性及根苗生长的影响[J]. 山西师范大学学报(自然科学版),2006,20(2):78-81.
[33]张岩,胡军,郭长虹,等. 植物谷胱甘肽-S-转移酶的分子生物学研究进展[J]. 哈尔滨师范大学自然科学学报,2007,23(4):76-79.
[34]ARNAO M B, HERNNDEZ-RUIZ J. Functions of melatonin in plants:a review[J]. Journal of Pineal Research,2015,59(2):133-150.
[35]LI L,YAN X Y. Insights into the roles of melatonin in alleviating heavy metal toxicity in crop plants[J]. Phyton,2021,90(6):1559-1572.
[36]ZOUFAN P, ZARE BAVANI M R, TOUSI S, et al. Effect of exogenous melatonin on improvement of chlorophyll content and photochemical efficiency of PSⅡ in mallow plants (Malva parviflora L. ) treated with cadmium[J]. Physiology and Molecular Biology of Plants,2023,29(1):145-157.
[37]PARK S, LEE D E, JANG H, et al. Melatonin-rich transgenic rice plants exhibit resistance to herbicide-induced oxidative stress[J]. Journal of Pineal Research,2013,54(3):258-263.
[38]KAYA C, OKANT M, UGURLAR F, et al. Melatonin-mediated nitric oxide improves tolerance to cadmium toxicity by reducing oxidative stress in wheat plants[J]. Chemosphere,2019,225:627-638.
[39]NAWAZ M A, JIAO Y Y, CHEN C, et al. Melatonin pretreatment improves vanadium stress tolerance of watermelon seedlings by reducing vanadium concentration in the leaves and regulating melatonin biosynthesis and antioxidant-related gene expression[J]. Journal of Plant Physiology,2018,220:115-127.
[40]LIANG D, SHEN Y Q, NI Z Y, et al. Exogenous melatonin application delays senescence of kiwifruit leaves by regulating the antioxidant capacity and biosynthesis of flavonoids[J]. Frontiers in Plant Science,2018,9:426.
[41]TOUSI S, ZOUFAN P, GHAHFARROKHIE A R. Alleviation of cadmium-induced phytotoxicity and growth improvement by exogenous melatonin pretreatment in mallow (Malva parviflora) plants[J]. Ecotoxicology and Environmental Safety,2020,206:111403.
[42]王均,王进,刘继,等. 褪黑素浸枝对葡萄扦插苗镉积累的影响[J]. 湖南农业大学学报(自然科学版),2020,46(4):419-424.
[43]孙舒畅. 褪黑素在番茄镉胁迫抗性中的功能研究[D]. 杭州:浙江大学,2020.
[44]ZHANG N,ZHAO B,ZHANG H J,et al. Melatonin promotes water-stress tolerance,lateral root formation,and seed germination in cucumber (Cucumis sativus L. )[J]. Journal of Pineal Research,2013,54(1):15-23.
[45]ARNAO M B, HERNNDEZ-RUIZ J. Melatonin:plant growth regulator and/or biostimulator during stress?[J]. Trends in Plant Science,2014,19(12):789-797.
[46]BASIT F, CHEN M, AHMED T, et al. Seed priming with brassinosteroids alleviates chromium stress in rice cultivars via improving ROS metabolism and antioxidant defense response at biochemical and molecular levels[J]. Antioxidants,2021,10(7):1089.
[47]NI J, WANG Q J, SHAH F A, et al. Exogenous melatonin confers cadmium tolerance by counterbalancing the hydrogen peroxide homeostasis in wheat seedlings[J]. Molecules,2018,23(4):799.
[48]寇士伟. 重金属Cd、Cu、Pb复合污染对芥菜的胁迫及芥菜对其吸收累积特征研究[D]. 广州:暨南大学,2011.
[49]BYEON Y, CHOI G H, LEE H Y, et al. Melatonin biosynthesis requires N-acetylserotonin methyltransferase activity of caffeic acid O-methyltransferase in rice[J]. Journal of Experimental Botany,2015,66(21):6917-6925.
[50]HAIDER F U, CAI L Q, COULTER J A, et al. Cadmium toxicity in plants:impacts and remediation strategies[J]. Ecotoxicology and Environmental Safety,2021,211:111887.
[51]吴香,李娟,曹艳,等. 植物根系分泌物响应镉胁迫的研究进展[J]. 中国农业科技导报,2023,25(7):12-20.
[52]陈炬廷,毛云,杨佳豪,等. KOH改性烟秆生物炭对铅、镉复合污染土壤中烤烟铅、镉吸收的影响[J]. 南方农业学报,2024,55(2):460-467.
[53]杨晓锋,姜永雷,蔺璟煜,等. 不同裂解温度生物炭对镉胁迫下烤烟生长特性和镉积累的影响[J]. 江苏农业科学,2023,51(9):227-233.
[54]彭红宇,刘红恩,王秋红,等. 低温生物炭和化肥配施对冬小麦生长和土壤铅镉生物有效性的影响[J]. 江苏农业科学,2023,51(4):212-219.
[55]万常. 外源褪黑素对芥菜镉毒害的缓解效应研究[D]. 长沙:中南林业科技大学,2022.
[56]YU X F, YANG L, FAN C Y, et al. Abscisic acid (ABA) alleviates cadmium toxicity by enhancing the adsorption of cadmium to root cell walls and inducing antioxidant defense system of Cosmos bipinnatus[J]. Ecotoxicology and Environmental Safety,2023,261:115101.
[57]MOUSTAFA-FARAG M, ELKELISH A, DAFEA M, et al. Role of melatonin in plant tolerance to soil stressors:salinity,pH and heavy metals[J]. Molecules,2020,25(22):5359.
[58]HASAN M K, AHAMMED G J, YIN L L, et al. Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis,vacuolar sequestration,and antioxidant potential in Solanum lycopersicum L.[J]. Frontiers in Plant Science,2015,6:601.

相似文献/References:

[1]王红,杨镇,裴文琪,等.功能性微生物制剂对镉胁迫下水稻生长及生理特性的影响[J].江苏农业学报,2016,(05):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
 WANG Hong,YANG Zhen,PEI Wen-qi,et al.Growth and physiological characteristics of cadmium-stressed rice influenced by functional microorganism agent[J].,2016,(03):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
[2]王淑娟,刘文举,庞训胜,等.褪黑素对牛卵母细胞体外成熟及孤雌胚胎发育的影响[J].江苏农业学报,2017,(02):361.[doi:doi:10.3969/j.issn.1000-4440.2017.02.019]
 WANG Shu-juan,LIU Wen-ju,PANG Xun-sheng,et al.Influence of melatonin on oocyte in vitro maturation and parthenogenetic embryo development in bovine[J].,2017,(03):361.[doi:doi:10.3969/j.issn.1000-4440.2017.02.019]
[3]吴朝波,郭建春,符少萍,等.海雀稗对镉胁迫的生理响应及积累特性[J].江苏农业学报,2015,(06):1337.[doi:doi:10.3969/j.issn.1000-4440.2015.06.022]
 WU Chao-bo,GUO Jian-chun,FU Shao-ping,et al.Physiological responses of Paspalum vaginatum Sw. to Cd stress and its Cd accumulation[J].,2015,(03):1337.[doi:doi:10.3969/j.issn.1000-4440.2015.06.022]
[4]杨威,闫海霞,汪家璐,等.一株协助寄主植物缓解镉胁迫的芽孢杆菌筛选及其耐镉机制[J].江苏农业学报,2015,(04):806.[doi:10.3969/j.issn.1000-4440.2015.04.015]
 YANG Wei,YAN Hai-xia,WANG Jia-lu,et al.Selection of a Bacillus subtilis strain alleviating Cd2+ stress in host plants and the mechanism[J].,2015,(03):806.[doi:10.3969/j.issn.1000-4440.2015.04.015]
[5]千春录,朱芹,高姗,等.外源褪黑素处理对采后水蜜桃冷藏品质及冷害发生的影响[J].江苏农业学报,2020,(03):702.[doi:doi:10.3969/j.issn.1000-4440.2020.03.024]
 QIAN Chun-lu,ZHU Qin,GAO Shan,et al.Effects of exogenous melatonin treatment on cold storage quality and chilling injury of postharvest peach fruit[J].,2020,(03):702.[doi:doi:10.3969/j.issn.1000-4440.2020.03.024]
[6]魏茜雅,林欣琪,梁腊梅,等.褪黑素引发处理提高朝天椒种子萌发及幼苗耐盐性的生理机制[J].江苏农业学报,2022,38(06):1637.[doi:doi:10.3969/j.issn.1000-4440.2022.06.023]
 WEI Xi-ya,LIN Xin-qi,LIANG La-mei,et al.Physiological mechanism of melatonin soaking on improving seed germination and seedling salt tolerance of pepper[J].,2022,38(03):1637.[doi:doi:10.3969/j.issn.1000-4440.2022.06.023]
[7]张雪莲,罗德旭,杨红,等.外源褪黑素和硒对高温胁迫下辣椒生理特性和抗氧化系统的影响[J].江苏农业学报,2023,(08):1729.[doi:doi:10.3969/j.issn.1000-4440.2023.08.013]
 ZHANG Xue-lian,LUO De-xu,YANG Hong,et al.Effects of exogenous melatonin and selenium on physiological properties and antioxidant systems of chilies under high temperature stress[J].,2023,(03):1729.[doi:doi:10.3969/j.issn.1000-4440.2023.08.013]
[8]任元龙,马蓉,王晓卓,等.叶面喷施褪黑素对盐胁迫下西瓜幼苗的影响[J].江苏农业学报,2024,(11):2140.[doi:doi:10.3969/j.issn.1000-4440.2024.11.018]
 REN Yuanlong,MA Rong,WANG Xiaozhuo,et al.Effects of foliar melatonin spray on watermelon seedlings under salt stress[J].,2024,(03):2140.[doi:doi:10.3969/j.issn.1000-4440.2024.11.018]
[9]杨建帮,姚文孔,杨丽,等.枸杞中的褪黑素含量及其积累特征[J].江苏农业学报,2025,(01):169.[doi:doi:10.3969/j.issn.1000-4440.2025.01.019]
 YANG Jianbang,YAO Wenkong,YANG Li,et al.The content and accumulation characteristics of melatonin in Lycium barbarum[J].,2025,(03):169.[doi:doi:10.3969/j.issn.1000-4440.2025.01.019]
[10]崔亮,付雪娇,万博,等.外源褪黑素对干旱胁迫下马铃薯幼苗生长和产量的影响[J].江苏农业学报,2025,(02):251.[doi:doi:10.3969/j.issn.1000-4440.2025.02.005]
 CUI Liang,FU Xuejiao,WAN Bo,et al.Effects of exogenous melatonin on growth and yield of potato seedlings under drought stress[J].,2025,(03):251.[doi:doi:10.3969/j.issn.1000-4440.2025.02.005]

备注/Memo

备注/Memo:
收稿日期:2024-08-06基金项目:国家现代农业产业技术体系四川水果创新团队项目(SCCXTD-2024-04);四川农业大学本科生科研兴趣培养计划项目(2023505)作者简介:张地莲(2003-),女,四川成都人,本科生,主要从事果树生理生态研究工作。(E-mail)1900611014@qq.com通讯作者:胡容平,(E-mail)hurongping1215@163.com
更新日期/Last Update: 2025-04-27