参考文献/References:
[1]王忠培,谢成军,董伟,等.基于多维间注意力机制的水稻病害识别模型[J]. 江苏农业学报,2024,40(4):625-635.
[2]邓楠,方逵,李成. 改进YOLOv7的水稻叶片病害检测算法研究[J]. 中国农机化学报,2024,45(11):196-201.
[3]GONG H, LIU T H, LUO T Y, et al. Based on FCN and DenseNet framework for the research of rice pest identification methods[J]. Agronomy,2023,13(2):410.
[4]CHAUDHARI D J, MALATHI K. Detection and prediction of rice leaf disease using a hybrid CNN-SVM model[J]. Optical Memory and Neural Networks,2023,32(1):39-57.
[5]DEMILIE W B. Plant disease detection and classification techniques:a comparative study of the performances[J]. Journal of Big Data,2024,11(1):5.
[6]LI F, XIONG Y. Automatic identification of butterfly species based on HoMSC and GLCMoIB[J]. The Visual Computer,2018,34(11):1525-1533.
[7]路阳,杨化龙,陈宇,等. 基于TSDPSO-SVM的水稻稻瘟病图像识别[J]. 江苏农业科学,2022,50(23):164-170.
[8]JAVIDAN S M, BANAKAR A, VAKILIAN K A, et al. Diagnosis of grape leaf diseases using automatic K-means clustering and machine learning[J]. Smart Agricultural Technology,2023,3:100081.
[9]周维,牛永真,王亚炜,等.基于改进的YOLOv4-GhostNet水稻病虫害识别方法[J]. 江苏农业学报,2022,38(3):685-695.
[10]王梦妮,顾寄南,王化佳,等. 基于改进 YOLOv5s 模型 的茶叶嫩芽识别方法[J]. 农业工程学报,2023,39(12):150-157.
[11]YANG S, XING Z Y, WANG H B, et al. Maize-YOLO:a new high-precision and real-time method for maize pest detection[J]. Insects,2023,14(3):278.
[12]李仁杰,宋涛,高婕,等.基于改进YOLOv5的自然环境下番茄患病叶片检测模型[J]. 江苏农业学报,2024,40(6):1028-1037.
[13]WANG J, YU L Y, YANG J, et al. DBA_SSD:A novel end-to-end object detection algorithm applied to plant disease detection[J]. Information,2021,12(11):474.
[14]ARUN R A, UMAMAHESWARI S. Effective and efficient multi-crop pest detection based on deep learning object detection models[J]. Journal of Intelligent & Fuzzy Systems,2022,43(4):5185-5203.
[15]AFZAAL U, BHATTARAI B, PANDEYA Y R, et al. An instance segmentation model for strawberry diseases based on mask R-CNN[J]. Sensors,2021,21(19):6565.
[16]BARI B S, ISLAM M N, RASHID M, et al. A real-time approach of diagnosing rice leaf disease using deep learning-based faster R-CNN framework[J]. PeerJ Computer Science,2021,7:e432.
[17]李志良,李梦霞,董勇,等. 基于改进YOLOv8的轻量化玉米害虫识别方法[J]. 江苏农业科学,2024,52(14):196-206.
[18]PRIYA A P, SUDHAKAR C V, KUMAR A P, et al. Pest detection and prevention for agricultural crops using yolov8 algorithm[C]//IEEE. International conference on intelligent systems for cybersecurity (ISCS). Piscataway:IEEE,2024.
[19]WANG Y C, YI C C, HUANG T, et al. Research on intelligent recognition for plant pests and diseases based on improved YOLOv8 model[J]. Applied Sciences,2024,14(12):5353.
[20]REIS D, KUPEC J, HONG J, et al. Real-time flying object detection with YOLOv8[J]. arXiv preprint arXiv,2023. DOI:https://doi.org/10.48550/arXiv.2305.09972.
[21]REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection[C]//IEEE. Proceedings of the IEEE conference on computer vision and pattern recognition. Piscataway:IEEE Computer Society,2016:779-788.
[22]TERVEN J, CRDOVA-ESPARZA D M, ROMERO-GONZLEZ J A. A comprehensive review of yolo architectures in computer vision:From yolov1 to yolov8 and yolo-nas[J]. Machine Learning and Knowledge Extraction,2023,5(4):1680-1716.
[23]LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//IEEE. Proceedings of the IEEE conference on computer vision and pattern recognition. Piscataway:IEEE Computer Society,2018:8759-8768.
[24]LIN T Y, DOLLR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//IEEE. Proceedings of the IEEE conference on computer vision and pattern recognition. Piscataway, NJ: IEEE Computer Society,2017:2117-2125.
[25]LI H L, LI J, WEI H B, et al. Slim-Neck by GSConv:a better design paradigm of detector architectures for autonomous vehicles[J]. arXiv preprint arXiv,2022.DOI:https://doi.org/10.1007/s11554-024-01436-6.
[26]YANG L X, ZHANG R Y, LI L D, et al. SimAm:a simple, parameter-free attention module for convolutional neural networks[C]//IMLS. International conference on machine learning. New York:ACM,2021.
[27]YANG G Y, LEI J, ZHU Z K, et al. AFPN: Asymptotic feature pyramid network for object detection[C]//IEEE. International conference on systems, Man, and Cybernetics. Prague:IEEE,2023.
[28]JIN X, XIE Y P, WEI X S, et al. Delving deep into spatial pooling for squeeze-and-excitation networks[J]. Pattern Recognition,2022,121:108159.
[29]WOO S, PARK J, LEE J Y, et al. Cbam:convolutional block attention module[C]//ECVA. Proceedings of the European conference on computer vision (ECCV). Berlin:Springer,2018.
[30]CAI X H, LAI Q X, WANG Y W, et al. Poly kernel inception network for remote sensing detection[C]//IEEE. Proceedings of the IEEE conference on computer vision and pattern recognition. Piscataway:IEEE Computer Society,2024.
[31]ZHU L, WANG X J, KE Z H, et al. Biformer:vision transformer with bi-level routing attention[C]//IEEE. Proceedings of the IEEE conference on computer vision and pattern recognition. Piscataway:IEEE Computer Society,2023.
相似文献/References:
[1]李恒,南新元,高丙朋,等.一种基于GhostNet的绿色类圆果实识别方法[J].江苏农业学报,2023,(03):724.[doi:doi:10.3969/j.issn.1000-4440.2023.03.013]
LI Heng,NAN Xin-yuan,GAO Bing-peng,et al.A green round-like fruits identification method based on GhostNet[J].,2023,(03):724.[doi:doi:10.3969/j.issn.1000-4440.2023.03.013]
[2]翟先一,魏鸿磊,韩美奇,等.基于改进YOLO卷积神经网络的水下海参检测[J].江苏农业学报,2023,(07):1543.[doi:doi:10.3969/j.issn.1000-4440.2023.07.011]
ZHAI Xian-yi,WEI Hong-lei,HAN Mei-qi,et al.Underwater sea cucumber identification based on improved YOLO convolutional neural network[J].,2023,(03):1543.[doi:doi:10.3969/j.issn.1000-4440.2023.07.011]
[3]陆煜,俞经虎,朱行飞,等.基于卷积神经网络的轻量级水稻叶片病害识别模型[J].江苏农业学报,2024,(02):312.[doi:doi:10.3969/j.issn.1000-4440.2024.02.013]
LU Yu,YU Jing-hu,ZHU Xing-fei,et al.A lightweight rice leaf disease recognition model based on convolutional neural network[J].,2024,(03):312.[doi:doi:10.3969/j.issn.1000-4440.2024.02.013]
[4]王忠培,谢成军,董伟,等.基于多维间注意力机制的水稻病害识别模型[J].江苏农业学报,2024,(04):625.[doi:doi:10.3969/j.issn.1000-4440.2024.04.006]
WANG Zhong-pei,XIE Cheng-jun,DONG Wei,et al.Rice disease identification model based on multi-dimensional attention mechanism[J].,2024,(03):625.[doi:doi:10.3969/j.issn.1000-4440.2024.04.006]
[5]化春键,黄宇峰,蒋毅,等.基于改进YOLOv5s模型的田间食用玫瑰花检测方法[J].江苏农业学报,2024,(08):1464.[doi:doi:10.3969/j.issn.1000-4440.2024.08.011]
HUA Chunjian,HUANG Yufeng,JIANG Yi,et al.Detection method of edible roses in field based on improved YOLOv5s model[J].,2024,(03):1464.[doi:doi:10.3969/j.issn.1000-4440.2024.08.011]
[6]承达瑜,赵伟,何伟德,等. 基于改进YOLOv5n模型的农作物病虫害识别方法[J].江苏农业学报,2024,(11):2021.[doi:doi:10.3969/j.issn.1000-4440.2024.11.005]
CHENG DayuZHAO WeiHE WeideWU ZepengWANG Jiandong. Identification method of crop diseases and insect pests based on improved YOLOv5n model[J].,2024,(03):2021.[doi:doi:10.3969/j.issn.1000-4440.2024.11.005]
[7]李芳,危疆树,王玉超,等.基于改进YOLOv8n模型的辣椒病害检测方法[J].江苏农业学报,2025,(02):323.[doi:doi:10.3969/j.issn.1000-4440.2025.02.013]
LI Fang,WEI Jiangshu,WANG Yuchao,et al.A chili disease detection method based on an improved YOLOv8n model[J].,2025,(03):323.[doi:doi:10.3969/j.issn.1000-4440.2025.02.013]