[1]靳新宇,于复兴,索依娜,等.基于改进YOLOv8的水稻病害检测算法[J].江苏农业学报,2025,(03):537-548.[doi:doi:10.3969/j.issn.1000-4440.2025.03.013]
 JIN Xinyu,YU Fuxing,SUO Yina,et al.Rice disease detection algorithm based on improved YOLOv8[J].,2025,(03):537-548.[doi:doi:10.3969/j.issn.1000-4440.2025.03.013]
点击复制

基于改进YOLOv8的水稻病害检测算法()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年03期
页码:
537-548
栏目:
农业信息工程
出版日期:
2025-03-31

文章信息/Info

Title:
Rice disease detection algorithm based on improved YOLOv8
作者:
靳新宇1于复兴12索依娜1宋小明3
(1.华北理工大学人工智能学院,河北唐山063210;2.河北省工业智能感知重点实验室,河北唐山063210;3.华北理工大学生命科学学院,河北唐山063210)
Author(s):
JIN Xinyu1YU Fuxing12SUO Yina1SONG Xiaoming3
(1.College of Artificial Intelligence, North China University of Science and Technology, Tangshan 063210, China;2.Hebei Key Laboratory of Industrial Intelligent Perception, Tangshan 063210, China;3.College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China)
关键词:
水稻病害目标检测YOLOv8深度学习图像处理
Keywords:
rice diseasestarget detectionYOLOv8deep learningimage processing
分类号:
TP391
DOI:
doi:10.3969/j.issn.1000-4440.2025.03.013
文献标志码:
A
摘要:
为提升对水稻病害的检测性能,本研究提出了一种改进的YOLOv8n检测算法。首先,在颈部网络中引入Slim-Neck结构,采用GSConv(Ghost shuffle convolution)降低计算成本,同时结合基于一次性聚合方法设计的跨阶段部分网络模块(VoVGSCSP)简化计算过程和网络结构,利用相似性感知注意力机制(SimAM)增强模型对病斑细微颜色变化的敏感性,最后将自适应特征金字塔网络(AFPN)模块和头部结构相结合,通过非相邻层的特征融合,精准捕捉病害区域的颜色、形状与纹理。试验结果显示,改进后的模型YOLOv8n-SMAF精确度、召回率和交并比阀值为0.50的平均精度(mAP50)分别达到85.1%、79.7%和83.7%。与原始模型YOLOv8n相比,改进后的模型YOLOv8n-SMAF精确度、召回率和mAP50分别提高了3.8个百分点、4.5个百分点和2.7个百分点。与SSD、YOLOv7-tiny、YOLOv10n等其他主流模型相比,YOLOv8n-SMAF模型具有更高的检测精度,尤其在复杂场景下的检测任务中表现出优势。本研究改进的模型为水稻病害的早期预警和精准防治提供了技术支持。
Abstract:
To improve the detection performance of rice diseases, this study proposed an improved YOLOv8n detection algorithm. Firstly, the Slim-Neck structure was introduced into the neck network. Ghost shuffle convolution (GSConv) was adopted to reduce the computational cost. At the same time, the cross-stage partial network module based on the one-shot aggregation method (VoVGSCSP) was combined to simplify the calculation process and network structure. The similarity-aware activation module (SimAM) attention mechanism was utilized to enhance the model’s sensitivity to subtle color changes of disease spots. Finally, the adaptive feature pyramid network (AFPN) module was combined with the head structure. Through the feature fusion of non-adjacent layers, the color, shape, and texture of the diseased areas were accurately captured. The experimental results showed that the precision, recall, and mean average precision at an intersection over union threshold of 0.50 (mAP50) of the improved model YOLOv8n-SMAF reached 85.1%, 79.7%, and 83.7% respectively. Compared with the original model YOLOv8n, the precision, recall, and mAP50 of the improved model YOLOv8n-SMAF increased by 3.8 percentage points, 4.5 percentage points, and 2.7 percentage points respectively. Compared with other mainstream models such as SSD, YOLOv7-tiny and YOLOv10n, the YOLOv8n-SMAF model had higher detection accuracy, especially showing advantages in detection tasks in complex scenarios. The improved model in this study provides technical support for the early warning and precise prevention and control of rice diseases.

参考文献/References:

[1]王忠培,谢成军,董伟,等.基于多维间注意力机制的水稻病害识别模型[J]. 江苏农业学报,2024,40(4):625-635.
[2]邓楠,方逵,李成. 改进YOLOv7的水稻叶片病害检测算法研究[J]. 中国农机化学报,2024,45(11):196-201.
[3]GONG H, LIU T H, LUO T Y, et al. Based on FCN and DenseNet framework for the research of rice pest identification methods[J]. Agronomy,2023,13(2):410.
[4]CHAUDHARI D J, MALATHI K. Detection and prediction of rice leaf disease using a hybrid CNN-SVM model[J]. Optical Memory and Neural Networks,2023,32(1):39-57.
[5]DEMILIE W B. Plant disease detection and classification techniques:a comparative study of the performances[J]. Journal of Big Data,2024,11(1):5.
[6]LI F, XIONG Y. Automatic identification of butterfly species based on HoMSC and GLCMoIB[J]. The Visual Computer,2018,34(11):1525-1533.
[7]路阳,杨化龙,陈宇,等. 基于TSDPSO-SVM的水稻稻瘟病图像识别[J]. 江苏农业科学,2022,50(23):164-170.
[8]JAVIDAN S M, BANAKAR A, VAKILIAN K A, et al. Diagnosis of grape leaf diseases using automatic K-means clustering and machine learning[J]. Smart Agricultural Technology,2023,3:100081.
[9]周维,牛永真,王亚炜,等.基于改进的YOLOv4-GhostNet水稻病虫害识别方法[J]. 江苏农业学报,2022,38(3):685-695.
[10]王梦妮,顾寄南,王化佳,等. 基于改进 YOLOv5s 模型 的茶叶嫩芽识别方法[J]. 农业工程学报,2023,39(12):150-157.
[11]YANG S, XING Z Y, WANG H B, et al. Maize-YOLO:a new high-precision and real-time method for maize pest detection[J]. Insects,2023,14(3):278.
[12]李仁杰,宋涛,高婕,等.基于改进YOLOv5的自然环境下番茄患病叶片检测模型[J]. 江苏农业学报,2024,40(6):1028-1037.
[13]WANG J, YU L Y, YANG J, et al. DBA_SSD:A novel end-to-end object detection algorithm applied to plant disease detection[J]. Information,2021,12(11):474.
[14]ARUN R A, UMAMAHESWARI S. Effective and efficient multi-crop pest detection based on deep learning object detection models[J]. Journal of Intelligent & Fuzzy Systems,2022,43(4):5185-5203.
[15]AFZAAL U, BHATTARAI B, PANDEYA Y R, et al. An instance segmentation model for strawberry diseases based on mask R-CNN[J]. Sensors,2021,21(19):6565.
[16]BARI B S, ISLAM M N, RASHID M, et al. A real-time approach of diagnosing rice leaf disease using deep learning-based faster R-CNN framework[J]. PeerJ Computer Science,2021,7:e432.
[17]李志良,李梦霞,董勇,等. 基于改进YOLOv8的轻量化玉米害虫识别方法[J]. 江苏农业科学,2024,52(14):196-206.
[18]PRIYA A P, SUDHAKAR C V, KUMAR A P, et al. Pest detection and prevention for agricultural crops using yolov8 algorithm[C]//IEEE. International conference on intelligent systems for cybersecurity (ISCS). Piscataway:IEEE,2024.
[19]WANG Y C, YI C C, HUANG T, et al. Research on intelligent recognition for plant pests and diseases based on improved YOLOv8 model[J]. Applied Sciences,2024,14(12):5353.
[20]REIS D, KUPEC J, HONG J, et al. Real-time flying object detection with YOLOv8[J]. arXiv preprint arXiv,2023. DOI:https://doi.org/10.48550/arXiv.2305.09972.
[21]REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection[C]//IEEE. Proceedings of the IEEE conference on computer vision and pattern recognition. Piscataway:IEEE Computer Society,2016:779-788.
[22]TERVEN J, CRDOVA-ESPARZA D M, ROMERO-GONZLEZ J A. A comprehensive review of yolo architectures in computer vision:From yolov1 to yolov8 and yolo-nas[J]. Machine Learning and Knowledge Extraction,2023,5(4):1680-1716.
[23]LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//IEEE. Proceedings of the IEEE conference on computer vision and pattern recognition. Piscataway:IEEE Computer Society,2018:8759-8768.
[24]LIN T Y, DOLLR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//IEEE. Proceedings of the IEEE conference on computer vision and pattern recognition. Piscataway, NJ: IEEE Computer Society,2017:2117-2125.
[25]LI H L, LI J, WEI H B, et al. Slim-Neck by GSConv:a better design paradigm of detector architectures for autonomous vehicles[J]. arXiv preprint arXiv,2022.DOI:https://doi.org/10.1007/s11554-024-01436-6.
[26]YANG L X, ZHANG R Y, LI L D, et al. SimAm:a simple, parameter-free attention module for convolutional neural networks[C]//IMLS. International conference on machine learning. New York:ACM,2021.
[27]YANG G Y, LEI J, ZHU Z K, et al. AFPN: Asymptotic feature pyramid network for object detection[C]//IEEE. International conference on systems, Man, and Cybernetics. Prague:IEEE,2023.
[28]JIN X, XIE Y P, WEI X S, et al. Delving deep into spatial pooling for squeeze-and-excitation networks[J]. Pattern Recognition,2022,121:108159.
[29]WOO S, PARK J, LEE J Y, et al. Cbam:convolutional block attention module[C]//ECVA. Proceedings of the European conference on computer vision (ECCV). Berlin:Springer,2018.
[30]CAI X H, LAI Q X, WANG Y W, et al. Poly kernel inception network for remote sensing detection[C]//IEEE. Proceedings of the IEEE conference on computer vision and pattern recognition. Piscataway:IEEE Computer Society,2024.
[31]ZHU L, WANG X J, KE Z H, et al. Biformer:vision transformer with bi-level routing attention[C]//IEEE. Proceedings of the IEEE conference on computer vision and pattern recognition. Piscataway:IEEE Computer Society,2023.

相似文献/References:

[1]李恒,南新元,高丙朋,等.一种基于GhostNet的绿色类圆果实识别方法[J].江苏农业学报,2023,(03):724.[doi:doi:10.3969/j.issn.1000-4440.2023.03.013]
 LI Heng,NAN Xin-yuan,GAO Bing-peng,et al.A green round-like fruits identification method based on GhostNet[J].,2023,(03):724.[doi:doi:10.3969/j.issn.1000-4440.2023.03.013]
[2]翟先一,魏鸿磊,韩美奇,等.基于改进YOLO卷积神经网络的水下海参检测[J].江苏农业学报,2023,(07):1543.[doi:doi:10.3969/j.issn.1000-4440.2023.07.011]
 ZHAI Xian-yi,WEI Hong-lei,HAN Mei-qi,et al.Underwater sea cucumber identification based on improved YOLO convolutional neural network[J].,2023,(03):1543.[doi:doi:10.3969/j.issn.1000-4440.2023.07.011]
[3]陆煜,俞经虎,朱行飞,等.基于卷积神经网络的轻量级水稻叶片病害识别模型[J].江苏农业学报,2024,(02):312.[doi:doi:10.3969/j.issn.1000-4440.2024.02.013]
 LU Yu,YU Jing-hu,ZHU Xing-fei,et al.A lightweight rice leaf disease recognition model based on convolutional neural network[J].,2024,(03):312.[doi:doi:10.3969/j.issn.1000-4440.2024.02.013]
[4]王忠培,谢成军,董伟,等.基于多维间注意力机制的水稻病害识别模型[J].江苏农业学报,2024,(04):625.[doi:doi:10.3969/j.issn.1000-4440.2024.04.006]
 WANG Zhong-pei,XIE Cheng-jun,DONG Wei,et al.Rice disease identification model based on multi-dimensional attention mechanism[J].,2024,(03):625.[doi:doi:10.3969/j.issn.1000-4440.2024.04.006]
[5]化春键,黄宇峰,蒋毅,等.基于改进YOLOv5s模型的田间食用玫瑰花检测方法[J].江苏农业学报,2024,(08):1464.[doi:doi:10.3969/j.issn.1000-4440.2024.08.011]
 HUA Chunjian,HUANG Yufeng,JIANG Yi,et al.Detection method of edible roses in field based on improved YOLOv5s model[J].,2024,(03):1464.[doi:doi:10.3969/j.issn.1000-4440.2024.08.011]
[6]承达瑜,赵伟,何伟德,等. 基于改进YOLOv5n模型的农作物病虫害识别方法[J].江苏农业学报,2024,(11):2021.[doi:doi:10.3969/j.issn.1000-4440.2024.11.005]
 CHENG DayuZHAO WeiHE WeideWU ZepengWANG Jiandong. Identification method of crop diseases and insect pests based on improved YOLOv5n model[J].,2024,(03):2021.[doi:doi:10.3969/j.issn.1000-4440.2024.11.005]
[7]李芳,危疆树,王玉超,等.基于改进YOLOv8n模型的辣椒病害检测方法[J].江苏农业学报,2025,(02):323.[doi:doi:10.3969/j.issn.1000-4440.2025.02.013]
 LI Fang,WEI Jiangshu,WANG Yuchao,et al.A chili disease detection method based on an improved YOLOv8n model[J].,2025,(03):323.[doi:doi:10.3969/j.issn.1000-4440.2025.02.013]

备注/Memo

备注/Memo:
收稿日期:2024-08-31基金项目:国家自然科学基金项目(32172583)作者简介:靳新宇(2001-),女,河北承德人,硕士研究生,研究方向为深度学习、图像处理、目标检测。(E-mail)767339849@qq.com通讯作者:索依娜,(E-mail)suoyina203@126.com
更新日期/Last Update: 2025-04-27