[1]王钊,张小莉,杨杰,等.不同改良剂对富硒高镉耕地土壤理化性质和玉米对硒、镉吸收的影响[J].江苏农业学报,2025,(03):517-525.[doi:doi:10.3969/j.issn.1000-4440.2025.03.011]
 WANG Zhao,ZHANG Xiaoli,YANG Jie,et al.Effects of different amendments on the physicochemical properties of selenium-rich and high-cadmium cultivated soils and the absorption of selenium and cadmium by maize[J].,2025,(03):517-525.[doi:doi:10.3969/j.issn.1000-4440.2025.03.011]
点击复制

不同改良剂对富硒高镉耕地土壤理化性质和玉米对硒、镉吸收的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年03期
页码:
517-525
栏目:
耕作栽培·资源环境
出版日期:
2025-03-31

文章信息/Info

Title:
Effects of different amendments on the physicochemical properties of selenium-rich and high-cadmium cultivated soils and the absorption of selenium and cadmium by maize
作者:
王钊1张小莉2杨杰3陈继平4张浩楠1吕家珑1贾汉忠1代允超1
(1.西北农林科技大学资源环境学院/农业农村部西北植物营养与农业环境重点实验室,陕西杨凌712100;2.汉阴县林业技术推广站,陕西安康725000;3.兴平市农业技术推广中心,陕西兴平712000;4.陕西省水工环地质调查中心,陕西西安710000)
Author(s):
WANG Zhao1ZHANG Xiaoli2YANG Jie3CHEN Jiping4ZHANG Haonan1LYU Jialong1JIA Hanzhong1DAI Yunchao1
(1.College of Natural Resources and Environment, Northwest A&F University/Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China;2.Hanyin County Forestry Technology Extension Station, Ankang 725000, China;3.Xingping Agricultural Technology Extension Center, Xingping 712000, China;4.Shaanxi Hydrogeology Engineering Geology and Environment Geology Survey Center, Xi’an 710000, China)
关键词:
土壤改良剂富硒高镉耕地镉污染玉米
Keywords:
soil amendmentselenium-rich and high-cadmium cultivated landcadmium pollutionmaize
分类号:
S156.2
DOI:
doi:10.3969/j.issn.1000-4440.2025.03.011
文献标志码:
A
摘要:
为改良富硒高镉耕地土壤,本研究选取凹凸棒土、叶面硅肥、生物炭、微生物菌剂作为改良剂,通过单独或联合施用的方式,探究其对土壤理化性质及玉米对硒、镉吸收的影响。结果表明,施用生物炭,土壤pH值、土壤阳离子交换量、土壤有机质含量、土壤有效磷含量、土壤速效钾含量、土壤中性磷酸酶活性、土壤荧光素二乙酸酯(FDA)水解酶活性、土壤脲酶活性均显著高于对照,且土壤有效硒含量、有效镉含量均显著低于对照。与单独施用生物炭或微生物菌剂处理相比,施用生物炭+微生物菌剂使土壤有效磷含量、荧光素二乙酸酯(FDA)水解酶活性、中性磷酸酶活性、脲酶活性均显著提高,土壤有效镉含量显著降低。与对照相比,施用凹凸棒土+叶面硅肥,土壤pH值、阳离子交换量、土壤有效磷含量、土壤速效钾含量、土壤有效硒含量、玉米籽粒硒含量显著升高,同时土壤有效镉含量显著降低。综上,施用生物炭+微生物菌剂、凹凸棒土+叶面硅肥对土壤的改良效果较好。本研究结果为富硒高镉耕地的土壤改良提供了理论依据。
Abstract:
In order to improve selenium-rich and high-cadmium cultivated soils, this study selected attapulgite, foliar silicon fertilizer, biochar, and microbial inoculant as amendments. Through single or combined application methods, the effects on the physical and chemical properties of soil and the absorption of selenium and cadmium by maize were explored. The results showed that the soil pH, soil cation exchange capacity, soil organic matter content, soil available phosphorus content, soil available potassium content, soil neutral phosphatase activity, soil fluorescein diacetate (FDA) hydrolase activity, and soil urease activity in the biochar-applied treatment were significantly higher than those in the control, and the soil available selenium content and soil available cadmium content were significantly lower than those in the control. Compared with the treatments of applying biochar or microbial inoculant alone, the soil available phosphorus content, fluorescein diacetate (FDA) hydrolase activity, neutral phosphatase activity, and urease activity in the treatment of applying biochar + microbial inoculant were significantly increased, and the soil available cadmium content was significantly decreased. Compared with the control, the soil pH, cation exchange capacity, soil available phosphorus content, soil available potassium content, soil available selenium content, and selenium content in maize grains in the treatment of applying attapulgite + foliar silicon fertilizer were significantly increased, and the soil available cadmium content was significantly decreased. In conclusion, the application of biochar + microbial inoculant and attapulgite + foliar silicon fertilizer had better effects on soil improvement. This study provides a theoretical basis for the soil improvement of selenium-rich and high-cadmium cultivated lands.

参考文献/References:

[1]CHEN J, HE W, ZHU X J, et al. Epidemiological study of kidney health in an area with high levels of soil cadmium and selenium:does selenium protect against cadmium-induced kidney injury?[J]. Science of the Total Environment,2020,698:134106.
[2]陈松灿,孙国新,陈正,等. 植物硒生理及与重金属交互的研究进展[J]. 植物生理学报,2014,50(5):612-624.
[3]李括,彭敏,赵传冬,等. 全国土地质量地球化学调查二十年[J]. 地学前缘,2019,26(6):128-158.
[4]王莹,马彦斌,王泽晶. 基于有效硒的富硒土壤阈值及有效硒的影响因素[J]. 环境科学,2023,44(1):395-404.
[5]GAO J, LIU Y, HUANG Y, et al. Daily selenium intake in a moderate selenium deficiency area of Suzhou,China[J]. Food Chemistry,2011,126(3):1088-1093.
[6]许海钊. 广西硒镉高背景区土壤-稻米系统中硒镉相互关系及其生物有效性研究[D]. 南宁:广西大学,2022.
[7]张建东,王丽,雒昆利,等. 安康南部大巴山区硒过剩土壤分布及来源研究[J]. 土壤,2022,54(4):847-855.
[8]陈朗,宋玉芳,张薇,等. 土壤镉污染毒性效应的多指标综合评价[J]. 环境科学,2008,29(9):2606-2612.
[9]任继平,李德发,张丽英. 镉毒性研究进展[J]. 动物营养学报,2003,15(1):1-6.
[10]管文文,戴其根,张洪程,等. 硒肥对水稻生长及其重金属累积的影响[J]. 土壤, 2018,50(6):1165-1169.
[11]刘杨,齐明星,王敏,等. 不同外源硒对镉污染土壤中小白菜生长及镉吸收的影响[J]. 环境科学,2021,42(4):2024-2030.
[12]YANG B B, YANG C, SHAO Z Y, et al. Selenium (Se) does not reduce cadmium (Cd) uptake and translocation in rice (Oryza sativa L.) in naturally occurred Se-rich paddy fields with a high geological background of Cd[J]. Bulletin of Environmental Contamination and Toxicology,2019,103:127-132.
[13]唐世琪,万能,曾明中,等. 恩施地区土壤与农作物硒镉地球化学特征[J]. 物探与化探,2020,44(3):607-614.
[14]KHALID S, SHAHID M, NIAZI N K, et al. A comparison of technologies for remediation of heavy metal contaminated soils[J]. Journal of Geochemical Exploration,2017,182:247-268.
[15]曹阳,李撑娟,王辉,等. 施加钝化剂及叶面肥对大田小麦-玉米轮作Cd吸收转运的影响[J]. 农业环境科学学报,2023,42(2):319-326.
[16]丁园,敖师营,陈怡红,等. 4种钝化剂对污染水稻土中Cu和Cd的固持机制[J]. 环境科学,2021,42(8):4037-4044.
[17]SONG P P, XU D, YUE J Y, et al. Recent advances in soil remediation technology for heavy metal contaminated sites:a critical review[J]. Science of the Total Environment,2022,838:156417.
[18]王杏,王革娇,史凯祥. 微生物镉解毒机制及微生物-植物互作修复研究进展[J]. 微生物学报,2023,50(4):1666-1680.
[19]鲍广灵,陶荣浩,杨庆波,等. 微生物修复农田土壤重金属污染技术研究进展[J]. 中国农学通报,2022,38(6):69-74.
[20]TU C, WEI J, GUAN F, et al. Biochar and bacteria inoculated biochar enhanced Cd and Cu immobilization and enzymatic activity in a polluted soil[J]. Environment International,2020,137:105576.
[21]QI X, GOU J, CHEN X M,et al. Application of mixed bacteria-loaded biochar to enhance uranium and cadmium immobilization in a co-contaminated soil[J]. Journal of Hazardous Materials,2021,401:123823.
[22]兰敏. 富硒区重金属及硒元素地球化学特征研究[D]. 恩施:湖北民族大学,2019.
[23]赵廷伟,李洪达,周薇,等. 施用凹凸棒石对Cd污染农田土壤养分的影响[J]. 农业环境科学学报,2019,38(10):2313-2318.
[24]袁林,赖星,杨刚,等. 钝化材料对镉污染农田原位钝化修复效果研究[J]. 环境科学与技术,2019,42(3):90-97.
[25]鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社,2013.
[26]瞿建国,徐伯兴,龚书椿. 氢化物发生-无色散原子荧光光度法测定土壤中有效态硒和总硒[J]. 土壤通报,1998,29(1):47-48,41.
[27]关松荫. 土壤酶及其研究法[M]. 北京:农业出版社,1986.
[28]GREEN V S, STOTT D E, DIACK M. Assay for fluorescein diacetate hydrolytic activity:optimization for soil samples[J]. Soil Biology and Biochemistry,2006,38(4):693-701.
[29]胡涛,钱运华,金叶玲,等. 凹凸棒土的应用研究[J]. 中国矿业,2005,14(10):73-76.
[30]李贝贝. 生物炭/凹凸棒石复合材料对重金属铅、镉污染的吸附特性与作用机理研究[D]. 南京:东南大学,2024.
[31]吕焕哲,张建新. 粘土矿物原位修复Cd污染土壤的研究进展[J]. 中国农学通报,2014,30(12):24-27.
[32]任珺,张凌云,刘瑞珍,等. 甘肃凹凸棒石对土壤Cd污染的钝化修复研究[J]. 非金属矿,2021,44(1):5-8.
[33]赵妍,宗良纲,曹丹,等. 江苏省典型茶园土壤硒分布特性及其有效性研究[J]. 农业环境科学学报,2011,30(12):2467-2474.
[34]熊仕娟,刘俊,徐卫红,等. 外源硒对黄瓜抗性、镉积累及镉化学形态的影响[J]. 环境科学,2015,36(1):286-294.
[35]谭骏,潘丽萍,黄雁飞,等. 叶面阻隔联合土壤钝化对水稻镉吸收转运的影响[J]. 农业资源与环境学报,2020,37(6):981-987.
[36]王进文,顾祝禹,皮杰,等. 不同钝化处理与叶面阻控剂对Cd污染稻田的修复效果[J]. 湖北农业科学,2023,62(3):130-134.
[37]马翔邦,赵转军,韩亮威,等. 腐植酸作用下生物炭对Cd污染土壤的修复效果[J]. 农业环境科学学报,2023,42(1):55-64.
[38]何莉莉,杨慧敏,钟哲科,等. 生物炭对农田土壤细菌群落多样性影响的PCR-DGGE分析[J]. 生态学报,2014,34(15):4288-4294.
[39]吕鹏,李莲芳,黄晓雅. 改性生物炭修复砷镉复合污染土壤研究进展[J]. 环境科学,2023,44(7):4077-4090.
[40]张莹,吴萍,孙庆业,等. 长期施用生物炭对土壤中Cd吸附及生物有效性的影响[J]. 农业环境科学学报,2020,39(5):1019-1025.
[41]安梅,董丽,张磊,等. 不同种类生物炭对土壤重金属镉铅形态分布的影响[J]. 农业环境科学学报,2018,37(5):892-898.
[42]朱英,沈根祥,钱晓雍,等. 上海市郊不同耕地类型土壤微生物活性研究[J]. 环境科学与技术,2015,38(1):15-18.
[43]李越,李利,张斌,等. 接种AMF提高干旱胁迫下土壤微生物活性和燕麦抗旱能力[J]. 植物营养与肥料学报,2023,29(6):1135-1149.
[44]张维娜,孙梅,陈秋红,等. 巨大芽孢杆菌JD-2的解磷效果及对土壤有效磷化的研究[J]. 吉林农业科学,2012,37(5):38-41.
[45]KULKARNI R M, SHETTY K V, SRINIKETHAN G. Cadmium (Ⅱ) and nickel (Ⅱ) biosorption by Bacillus laterosporus (MTCC 1628)[J]. Journal of the Taiwan Institute of Chemical Engineers,2014,45(4):1628-1635.
[46]钟心,钟建,黄占斌. 氮磷肥施用对保水剂钝化土壤重金属铅镉效果的影响[J]. 水土保持通报,2019,39(2):88-93.
[47]BANDARA T, FRANKS A, XU J M, et al. Chemical and biological immobilization mechanisms of potentially toxic elements in biochar-amended soils[J]. Critical Reviews in Environmental Science and Technology,2020,50(9):903-978.
[48]LIN M X, LI F Y, LI X T, et al. Biochar-clay,biochar-microorganism and biochar-enzyme composites for environmental remediation:a review[J]. Environmental Chemistry Letters,2023,21(3):1837-1862.
[49]YANG Y, WANG X, WANG Y, et al. Pesticide contamination remediation by biochar-immobilized microorganisms:a review[J]. International Journal of Environmental Science and Technology,2024,21(2):2225-2238.
[50]孙漱玉,黄梦鑫,孔强,等. 生物炭固定化菌复合材料在环境修复中的应用研究进展[J]. 环境科学,2024,45(4):2185-2194.
[51]翟辉. 水分和有机质对土壤硒形态转化的影响机制研究[D]. 杨凌:西北农林科技大学,2021.

备注/Memo

备注/Memo:
收稿日期:2024-10-08基金项目:陕西省重点研发计划项目(2024NC-ZDCYL-02-14);国家重点研发计划项目(2023YFD1700102);陕西省农业关键核心技术攻关项目(2024NYGG011);陕西省公益性地质调查项目(201908)作者简介:王钊(1999-),男,甘肃渭源人,硕士研究生,主要研究方向为受污染耕地的安全利用与提质增效。(E-mail)502071403@qq.com通讯作者:代允超,(E-mail)daiyc2018@163.com
更新日期/Last Update: 2025-04-27