[1]刘帅,马佩勇,郭可,等.紫色甘薯突变体形成的表观调控机制[J].江苏农业学报,2025,(03):432-444.[doi:doi:10.3969/j.issn.1000-4440.2025.03.002]
 LIU Shuai,MA Peiyong,GUO Ke,et al.Epigenetic regulatory mechanisms of purple sweetpotato mutant formation[J].,2025,(03):432-444.[doi:doi:10.3969/j.issn.1000-4440.2025.03.002]
点击复制

紫色甘薯突变体形成的表观调控机制()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年03期
页码:
432-444
栏目:
遗传育种·生理生化
出版日期:
2025-03-31

文章信息/Info

Title:
Epigenetic regulatory mechanisms of purple sweetpotato mutant formation
作者:
刘帅马佩勇郭可贾赵东禹阳张铅边小峰
(江苏省农业科学院粮食作物研究所,江苏南京210014)
Author(s):
LIU ShuaiMA PeiyongGUO KeJIA ZhaodongYU YangZHANG QianBIAN Xiaofeng
(Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China)
关键词:
紫色甘薯突变体花青素表观遗传DNA甲基化组蛋白修饰
Keywords:
purple sweetpotatomutantanthocyaninsepigeneticsDNA methylationhistone modification
分类号:
S531.032
DOI:
doi:10.3969/j.issn.1000-4440.2025.03.002
文献标志码:
A
摘要:
紫色甘薯因富含花青素而备受消费者喜爱,然而其高频的突变却严重影响了品种的稳定性。本研究以宁紫薯4号及其突变体为研究对象,通过对其表型、理化特性进行分析发现,宁紫薯4号突变体中的花青素、β-胡萝卜素及淀粉含量发生了明显变化,而产量和大多数表型没有发生显著变化。通过转录组测序分析,共发现313个差异表达基因,突变体中参与花青素合成的相关基因(IbCHS、IbCHI、IbDFR、IbANS和IbC4H)和转录因子编码基因(IbMYB R2R3、IbbHLH2和IbWD40)的相对表达量均较宁紫薯4号明显降低,而突变体中参与淀粉合成的相关基因(IbAGPL2)的相对表达量较宁紫薯4号明显升高。突变体中预测功能为DNA甲基转移酶的基因IbCMT2和预测功能为组蛋白去甲基化酶的基因IbJMJ25的相对表达量均较宁紫薯4号表现为上调。通过N6-甲基腺嘌呤斑点印迹(6mA)分析全基因组甲基化水平的变化发现,突变体的DNA甲基化水平较宁紫薯4号明显提高;利用亚硫酸氢盐处理后测序法(BSP)进一步分析发现,突变体中转录因子MYB2编码基因的DNA甲基化水平提高;蛋白质印迹(Western blot)结果显示,突变体中H3K9me2、H3K27me2的修饰水平明显下降。上述结果表明,紫色甘薯呈现的表型是由于表观修饰的变化导致花青素合成受到抑制,从而产生了相应突变。本研究首次从表观调控的角度解析甘薯突变的机制,不仅可为甘薯表观遗传研究提供新思路,还有望基于表观调控开创甘薯定向育种的新方法。
Abstract:
Purple sweetpotatoes are highly valued by consumers due to their rich content of anthocyanins. However, their frequent mutations seriously affect the stability of purple sweetpotato varieties. In this study, Ningzishu 4 and its mutant were used as research objects. The analysis of their phenotypes and physicochemical properties revealed that the mutant had significant changes in anthocyanin, β-carotene, and starch content, while there were no significant changes in yield and most phenotypes. Through transcriptome sequencing analysis, a total of 313 differentially expressed genes were identified. The relative expression levels of genes (IbCHS, IbCHI, IbDFR, IbANS, and IbC4H) involved in anthocyanin synthesis and transcription factor-encoding genes (IbMYB R2R3, IbbHLH2, and IbWD40) in the mutant were significantly lower than those in Ningzishu 4. In contrast, the relative expression level of the gene (IbAGPL2) involved in starch synthesis in the mutant was significantly higher than that in Ningzishu 4. The relative expression levels of the gene IbCMT2, predicted to be a DNA methyltransferase, and the gene IbJMJ25, predicted to be a histone demethylase, in the mutant were both upregulated compared with Ningzishu 4. By analyzing the changes in global methylation levels using N6-methyladenine dot blot (6mA), it was found that the DNA methylation level in the mutant was significantly higher than that in Ningzishu 4. Further analysis using bisulfite sequencing (BSP) revealed that the DNA methylation level of the transcription factor MYB2 in the mutant was increased. The results of Western blot showed that the modification levels of H3K9me2 and H3K27me2 in the mutant were significantly lower. The above results indicate that the phenotype of purple sweetpotato is due to changes in epigenetic modifications that inhibit anthocyanin synthesis, thereby causing the corresponding mutations. This study is the first to elucidate the mechanism of sweetpotato mutation from the perspective of epigenetic regulation. It not only provides new ideas for the epigenetic research of sweetpotato but also holds promise for developing new methods of directed breeding in sweetpotato based on epigenetic regulation.

参考文献/References:

[1]ALAM M K. A comprehensive review of sweet potato (Ipomoea batatas [L.]Lam):revisiting the associated health benefits[J]. Trends in Food Science & Technology,2021,115:512-529.
[2]ZHANG X, YANG Y, WU Z F, et al. The modulatory effect of anthocyanins from purple sweet potato on human intestinal microbiota in vitro[J]. Journal of Agricultural and Food Chemistry,2016,64(12):2582-2590.
[3]YONG H M, WANG X C, SUN J, et al. Comparison of the structural characterization and physicochemical properties of starches from seven purple sweet potato varieties cultivated in China[J]. International Journal of Biological Macromolecules,2018,120:1632-1638.
[4]TANG C, SUN J, ZHOU B, et al. Effects of polysaccharides from purple sweet potatoes on immune response and gut microbiota composition in normal and cyclophosphamide treated mice[J]. Food & Function,2018,9(2):937-950.
[5]TORRES A, NORIEGA L G, DELGADILLO-PUGA C, et al. Caffeoylquinic acid derivatives of purple sweet potato as modulators of mitochondrial function in mouse primary hepatocytes[J]. Molecules,2021,26(2):319.
[6]ZHOU L, ZHANG C Q, QIANG Y, et al. Anthocyanin from purple sweet potato attenuates lead-induced reproductive toxicity mediated by JNK signaling pathway in male mice[J]. Ecotoxicology and Environmental Safety,2021,224:112683.
[7] DE AGUIAR CIPRIANO P, KIM H, FANG C, et al. In vitro digestion,absorption and biological activities of acylated anthocyanins from purple sweet potatoes (Ipomoea batatas)[J]. Food Chemistry,2022,374:131076.
[8]YANG Y, ZHANG Z C, ZHOU Q, et al. Hypouricemic effect in hyperuricemic mice and xanthine oxidase inhibitory mechanism of dietary anthocyanins from purple sweet potato (Ipomoea batatas L.)[J]. Journal of Functional Foods,2020,73:104151.
[9]YANG Y, ZHANG J L, SHEN L H, et al. Inhibition mechanism of diacylated anthocyanins from purple sweet potato (Ipomoea batatas L.) against α-amylase and α-glucosidase[J]. Food Chemistry,2021,359:129934.
[10]LIU D, JI Y L, WANG K X, et al. Purple sweet potato anthocyanin extract regulates redox state related to gut microbiota homeostasis in obese mice[J]. Journal of Food Science,2022,87(5):2133-2146.
[11]CAI Z, SONG L H, QIAN B J, et al. Understanding the effect of anthocyanins extracted from purple sweet potatoes on alcohol-induced liver injury in mice[J]. Food Chemistry,2018,245:463-470.
[12]CUI D L, ZHAO S X, XU H N, et al. The interaction of MYB,bHLH and WD40 transcription factors in red pear (Pyrus pyrifolia) peel[J]. Plant Molecular Biology,2021,106(4/5):407-417.
[13]YAMAGISHI M, TODA S, TASAKI K. The novel allele of the LhMYB12 gene is involved in splatter-type spot formation on the flower tepals of Asiatic hybrid lilies (Lilium spp.)[J]. The New Phytologist,2014,201(3):1009-1020.
[14]LI X L, XUE C, LI J M, et al. Genome-wide identification,evolution and functional divergence of MYB transcription factors in Chinese white pear (Pyrus bretschneideri)[J]. Plant & Cell Physiology,2016,57(4):824-847.
[15]ZHU J, WANG Y Z, WANG Q Y, et al. The combination of DNA methylation and positive regulation of anthocyanin biosynthesis by MYB and bHLH transcription factors contributes to the petal blotch formation in Xibei tree peony[J]. Horticulture Research,2023,10(6):uhad100.
[16]RAUSHER M D, MILLER R E, TIFFIN P. Patterns of evolutionary rate variation among genes of the anthocyanin biosynthetic pathway[J]. Molecular Biology and Evolution,1999,16(2):266-274.
[17]CHEN J B, SHU Y C, CHEN Y H, et al. Evaluation of antioxidant capacity and gut microbiota modulatory effects of different kinds of berries[J]. Antioxidants,2022,11(5):1020.
[18] HARVEY MILLAR A, HEAZLEWOOD J L, GIGLIONE C, et al. The scope,functions,and dynamics of posttranslational protein modifications[J]. Annual Review of Plant Biology,2019,70:119-151.
[19]MA K F, ZHANG Q X, CHENG T R, et al. Substantial epigenetic variation causing flower color chimerism in the ornamental tree Prunus mume revealed by single base resolution methylome detection and transcriptome sequencing[J]. International Journal of Molecular Sciences,2018,19(8):2315.
[20]EL-SHARKAWY I, LIANG D, XU K N. Transcriptome analysis of an apple (Malus × domestica) yellow fruit somatic mutation identifies a gene network module highly associated with anthocyanin and epigenetic regulation[J]. Journal of Experimental Botany,2015,66(22):7359-7376.
[21]CAI H Y, ZHANG M, CHAI M N, et al. Epigenetic regulation of anthocyanin biosynthesis by an antagonistic interaction between H2A.Z and H3K4me3[J]. New Phytologist,2019,221(1):295-308.
[22]NGUYEN N H, JEONG C Y, KANG G H, et al. MYBD employed by HY5 increases anthocyanin accumulation via repression of MYBL2 in Arabidopsis[J]. The Plant Journal,2015,84(6):1192-1205.
[23]CHARRON J F, HE H, ELLING A A, et al. Dynamic landscapes of four histone modifications during deetiolation in Arabidopsis[J]. The Plant Cell,2009,21(12):3732-3748.
[24]FAN D, WANG X Q, TANG X F, et al. Histone H3K9 demethylase JMJ25 epigenetically modulates anthocyanin biosynthesis in poplar[J]. The Plant Journal,2018,96(6):1121-1136.
[25]后猛,李臣,宋炜涵,等. 紫肉甘薯及其突变体花青素积累差异的比较转录组分析[J]. 江苏农业学报,2022,38(2):313-325.
[26]雷艳,汤琳菲,董文,等. 紫甘薯与黄肉突变体生物学特征及块根品质的比较分析[J]. 湖南农业科学,2022(2):5-9.
[27]DONG W, TANG L F, PENG Y L, et al. Comparative transcriptome analysis of purple-fleshed sweet potato and its yellow-fleshed mutant provides insight into the transcription factors involved in anthocyanin biosynthesis in tuberous root[J]. Frontiers in Plant Science,2022,13:924379.
[28]ZHENG X G, CHEN L, XIA H, et al. Transgenerational epimutations induced by multi-generation drought imposition mediate rice plant’s adaptation to drought condition[J]. Scientific Reports,2017,7:39843.
[29]GUO K, BIAN X F, JIA Z D, et al. Effects of nitrogen level on structural and functional properties of starches from different colored-fleshed root tubers of sweet potato[J]. International Journal of Biological Macromolecules,2020,164:3235-3242.
[30]WANG S, WANG H Y, XU Z H, et al. m6A mRNA modification promotes chilling tolerance and modulates gene translation efficiency in Arabidopsis[J]. Plant Physiology,2023,192(2):1466-1482.
[31]MILNE L, XU Y, PERRIN D M, et al. An approach to gene-specific transcription inhibition using oligonucleotides complementary to the template strand of the open complex[J]. Proceedings of the National Academy of Sciences of the United States of America,2000,97(7):3136-3141.
[32]LIU S, XUE C, FANG Y, et al. Global involvement of lysine crotonylation in protein modification and transcription regulation in rice[J]. Molecular & Cellular Proteomics,2018,17(10):1922-1936.
[33]EL SHEIKHA A F, RAY R C. Potential impacts of bioprocessing of sweet potato:review[J]. Critical Reviews in Food Science and Nutrition,2017,57(3):455-471.
[34]蒋汉蓉,贺立红,王玲,等. 常温下不同包装方式对甘薯抑芽作用及品质的影响[J]. 南方农业学报,2024,55(6):1744-1752.
[35]侯会,苏涵,王维,等. 外源施用6-磷酸海藻糖生物制剂对甘薯营养品质和产量的影响[J]. 江苏农业科学,2024,52(18):105-113.
[36]秦广利,陈玉琴,崔保伟. 长期添加外源不同有机物对土壤性状和甘薯产量的影响[J]. 江苏农业科学,2023,51(17):98-104.
[37]李永鹏,龚凡婷,冉腾飞,等. 遮荫及复光对不同类型甘薯产量形成和糖类物质的影响[J]. 南方农业学报,2024,55(11):3242-3254.
[38]许仙菊,姜晓蕊,陈丹艳,等. 耐连作甘薯品种的筛选及薯块氮、磷、钾营养状况分析[J]. 江苏农业学报,2023,39(3):657-664.
[39]SICILIA A, SCIAL E, PUGLISI I, et al. Anthocyanin biosynthesis and DNA methylation dynamics in sweet orange fruit [Citrus sinensis L. (Osbeck)] under cold stress[J]. Journal of Agricultural and Food Chemistry,2020,68(26):7024-7031.
[40]PENG Z, TIAN J, LUO R L, et al. MiR399d and epigenetic modification comodulate anthocyanin accumulation in Malus leaves suffering from phosphorus deficiency[J]. Plant,Cell & Environment,2020,43(5):1148-1159.
[41]WANG Z G, MENG D, WANG A D, et al. The methylation of the PcMYB10 promoter is associated with green-skinned sport in Max Red Bartlett pear[J]. Plant Physiology,2013,162(2):885-896.
[42]TANG M W, XUE W J, LI X Q, et al. Mitotically heritable epigenetic modifications of CmMYB6 control anthocyanin biosynthesis in Chrysanthemum[J]. New Phytologist,2022,236(3):1075-1088.
[43]WANG Q B, WANG Y P, SUN H H, et al. Transposon-induced methylation of the RsMYB1 promoter disturbs anthocyanin accumulation in red-fleshed radish[J]. Journal of Experimental Botany,2020,71(9):2537-2550.
[44]D’AMELIA V, VILLANO C, BATELLI G, et al. Genetic and epigenetic dynamics affecting anthocyanin biosynthesis in potato cell culture[J]. Plant Science,2020,298:110597.
[45]BAI S L, TUAN P A, SAITO T, et al. Epigenetic regulation of MdMYB1 is associated with paper bagging-induced red pigmentation of apples[J]. Planta,2016,244(3):573-586.
[46]FAN D, WANG X Q, LIU T T, et al. Epigenetic regulation of high light-induced anthocyanin biosynthesis by histone demethylase IBM1 in Arabidopsis[J]. New Phytologist,2024,242(6):2570-2585.
[47]SUN H, LI J J, SONG H Y, et al. Comprehensive analysis of AGPase genes uncovers their potential roles in starch biosynthesis in Lotus seed[J]. BMC Plant Biology,2020,20(1):457.

相似文献/References:

[1]刘凯,王爱民,严国红,等.一个水稻显性矮秆突变体的遗传特性与降株高能力[J].江苏农业学报,2016,(05):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
 LIU Kai,WANG Ai-min,YAN Guo-hong,et al.Genetic analysis and plant height reduction of a dominant dwarf mutant of rice[J].,2016,(03):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
[2]孟祥春,郑肖祎,黄泽鹏,等.CgCDA3基因缺失对胶孢炭疽菌生长和侵染致病的影响[J].江苏农业学报,2018,(05):1013.[doi:doi:10.3969/j.issn.1000-4440.2018.05.007]
 MENG Xiang-chun,ZHENG Xiao-yi,HUANG Ze-peng,et al.Effects of knocking out CgCDA3 gene on growth and pathogenesis of Colletotrichum gloeosporioides[J].,2018,(03):1013.[doi:doi:10.3969/j.issn.1000-4440.2018.05.007]
[3]黄静玮,屈会娟,沈学善,等.不同形态钾肥对川紫薯2号花青素合成及其关键酶活性的影响[J].江苏农业学报,2020,(06):1382.[doi:doi:10.3969/j.issn.1000-4440.2020.06.005]
 HUANG Jing-wei,QU Hui-juan,SHEN Xue-shan,et al.Effects of different forms of potassium on the anthocyanin synthesis and the key enzymes activities of Chuanzishu 2[J].,2020,(03):1382.[doi:doi:10.3969/j.issn.1000-4440.2020.06.005]
[4]李军,吴霁蓂,高广春,等.番红花多柱头突变体Cs5的转录组分析[J].江苏农业学报,2021,(06):1630.[doi:doi:10.3969/j.issn.1000-4440.2021.05.034]
 LI Jun,WU Ji-ming,GAO Guang-chun,et al.Transcriptome analysis of saffron mutant Cs5 with multiple stigmas[J].,2021,(03):1630.[doi:doi:10.3969/j.issn.1000-4440.2021.05.034]

备注/Memo

备注/Memo:
收稿日期:2025-01-03基金项目:国家重点研发计划项目(2023YFE0111700);国家自然科学基金项目(32101787);江苏省种业振兴揭榜挂帅项目[JBGS(2021)010];国家甘薯产业技术体系项目(CARS-10)作者简介:刘帅(1992-),男,江苏盐城人,博士,助理研究员,主要从事甘薯遗传育种研究。(Tel)025-84390309;(E-mail)598045053@qq.com通讯作者:边小峰,(Tel)025-84390309;(E-mail)43537920@qq.com
更新日期/Last Update: 2025-04-27