[1]山溪,陶美奇,潘永飞,等.甘蓝β-淀粉酶基因家族的鉴定及其响应低温胁迫的表达分析[J].江苏农业学报,2025,(02):345-354.[doi:doi:10.3969/j.issn.1000-4440.2025.02.015]
 SHAN Xi,TAO Meiqi,PAN Yongfei,et al.Identification of β-amylase gene family in cabbage and the expression analysis in response to low temperature stress[J].,2025,(02):345-354.[doi:doi:10.3969/j.issn.1000-4440.2025.02.015]
点击复制

甘蓝β-淀粉酶基因家族的鉴定及其响应低温胁迫的表达分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年02期
页码:
345-354
栏目:
园艺
出版日期:
2025-02-28

文章信息/Info

Title:
Identification of β-amylase gene family in cabbage and the expression analysis in response to low temperature stress
作者:
山溪陶美奇潘永飞秦文斌张振超姚悦梅戴忠良
(江苏丘陵地区镇江农业科学研究所,江苏句容212400)
Author(s):
SHAN XiTAO MeiqiPAN YongfeiQIN WenbinZHANG ZhenchaoYAO YuemeiDAI Zhongliang
(Zhenjiang Institute of Agricultural Sciences of the Ning-Zhen Hilly District, Jurong 212400, China)
关键词:
甘蓝BAM基因家族低温胁迫亚细胞定位
Keywords:
cabbageBAM gene familylow temperature stresssubcellular localization
分类号:
S635.01
DOI:
doi:10.3969/j.issn.1000-4440.2025.02.015
文献标志码:
A
摘要:
β-淀粉酶(BAM)是植物水解淀粉的重要酶类,在植物应对非生物胁迫响应中有重要作用。本研究基于甘蓝BRAD参考基因组的全基因组序列,分离鉴定得到20个BolBAM基因,并对其家族成员进行系统发育分析、蛋白质特征分析、基因结构分析、不同器官/组织中的相对表达量分析、低温(2 ℃)胁迫下的基因表达模式分析。结果表明,从甘蓝中共鉴定得到20个BolBAM蛋白,BolBAM蛋白的氨基酸序列长度范围是193 aa(BolBAM3c)~678 aa(BolBAM7);甘蓝BAM蛋白家族成员兼有弱酸性、弱碱性蛋白质;除BolBAM11、BolBAM12、BolBAM14外,其他BolBAM蛋白均为亲水性蛋白质。RNA-Seq(转录组)分析结果表明,BolBAM1b、BolBAM5a、BolBAM9b在7个组织/器官中的相对表达量均较高,在花中BolBAM1b的相对表达量最高,在角果中BolBAM5a的相对表达量最高,在愈伤组织中BolBAM9b的相对表达量最高。本研究还发现,在甘蓝耐冷材料923、冷敏材料D9中,14个BolBAM基因受到低温诱导表达;冷敏材料D9中BolBAM3a的相对表达量在低温处理6 h时高于耐冷材料923,但在低温处理24 h时,其相对表达量显著低于923;耐冷材料923中BolBAM3b的相对表达量在低温处理6 h、24 h时均显著高于冷敏材料D9。本研究结果为后续开展BolBAM3a、BolBAM3b基因调控甘蓝应对低温胁迫的研究提供了重要参考。
Abstract:
β-amylase (BAM) is an important enzyme in the hydrolysis of plant starch, playing a crucial role in the response of plants to abiotic stress. This study, which was based on the whole genome sequence of the cabbage BRAD reference genome, identified 20 BolBAM genes. The phylogenetic analysis, protein characteristics, gene structure, and expression levels in different organs or tissues of its family members were analyzed. Additionally, the gene expression patterns under 2 ℃ low temperature stress were also examined. The results showed that a total of 20 BolBAM proteins were identified in cabbage. The amino acid sequence length of BolBAM proteins ranged from 193 aa (BolBAM3c) to 678 aa (BolBAM7). Members of the cabbage BAM protein family included both weakly acidic and weakly alkaline proteins. Except for BolBAM11, BolBAM12, and BolBAM14, all other BolBAM proteins were hydrophilic. The RNA-Seq results showed that BolBAM1b, BolBAM5a, and BolBAM9b had relatively high expression levels in seven tissues or organs, with BolBAM1b showing the highest expression in flowers, BolBAM5a in pods, and BolBAM9b in callus tissue. This study found that the expression of 14 BolBAM genes in the cold-resistant material 923 and cold-sensitive material D9 of cabbage was induced by low temperature. The relative expression of BolBAM3a in cold-sensitive material D9 was higher than that in cold-resistant material 923 at 6 h of low temperature treatment, but it was significantly lower than that in cold-resistant material 923 at 24 h of low temperature treatment. The relative expression of BolBAM3b in cold-resistant material 923 was significantly higher than that in cold-sensitive material D9 at 6 h and 24 h of low temperature treatment. This study provides important insights for further research on the regulation of low temperature response in cabbage by the BolBAM3a and BolBAM3b genes.

参考文献/References:

[1]杨丽梅,方智远,张扬勇,等. 中国结球甘蓝抗病抗逆遗传育种近年研究进展[J]. 园艺学报,2020,47(9):1678-1688.
[2]CHINNUSAMY V, ZHU J H, ZHU J K. Cold stress regulation of gene expression in plants[J]. Trends in Plant Science,2007,12(10):444-451.
[3]徐磊,林碧英,林义章. 春化作用与甘蓝类蔬菜的生育障碍[J]. 亚热带植物科学,2002,31(4):73-76.
[4]张伟,余方伟,李建斌,等. 结球甘蓝CBF家族特征分析及低温诱导基因BoCBF1、BoCBF2a和BoCBF3的表达分析[J]. 江苏农业学报,2024,40(1):156-164.
[5]山溪,秦文斌,张振超,等. 甘蓝蔗糖磷酸合酶家族的鉴定和表达分析[J]. 江苏农业科学,2021,49(16):53-60.
[6]KAPLAN F, KOPKA J, SUNG D Y, et al. Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content[J]. Plant Journal,2007,50(6):967-981.
[7]MARUYAMA K, TAKEDA M, KIDOKORO S, et al. Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A[J]. Plant Physiology,2009,150(4):1972-1980.
[8]SONG Y, ZHANG X Y, LI M Z, et al. The direct targets of CBFs:in cold stress response and beyond[J]. Journal of Integrative Plant Biology,2021,63(11):1874-1887.
[9]LEE J H, YU D J, KIM S J, et al. Intraspecies differences in cold hardiness,carbohydrate content and β-amylase gene expression of Vaccinium corymbosum during cold acclimation and deacclimation[J]. Tree Physiology,2012,32(12):1533-1540.
[10]GUPTA A K, KAUR N. Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants[J]. Journal of Biosciences,2005,30(5):761-776.
[11]SMEEKENS S, MA J K, HANSON J, et al. Sugar signals and molecular networks controlling plant growth[J]. Current Opinion in Plant Biology,2010,13(3):273-278.
[12]STITT M, ZEEMAN S C. Starch turnover:pathways,regulation and role in growth[J]. Current Opinion in Plant Biology,2012,15(3):282-292.
[13]SUN S H, HU C G, QI X J, et al. The AaCBF4-AaBAM3.1 module enhances freezing tolerance of kiwifruit (Actinidia arguta)[J]. Horticulture Research,2021,8(1):97.
[14]MONROE J D, STORM A R, BADLEY E M, et al. β-amylase1 and β-amylase3 are plastidic starch hydrolases in Arabidopsis that seem to be adapted for different thermal,pH,and stress conditions[J]. Plant Physiology,2014,166(4):1748-1763.
[15]PENG T, ZHU X F, DUAN N, et al. PtrBAM1,a β-amylase-coding gene of Poncirus trifoliata,is a CBF regulon member with function in cold tolerance by modulating soluble sugar levels[J]. Plant,Cell & Environment,2014,37(12):2754-2767.
[16]SEKI M, NARUSAKA M, ABE H, et al. Monitoring the expression pattern of 1 300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray[J]. The Plant Cell,2001,13(1):61-72.
[17]KAPLAN F, GUY C L. β-amylase induction and the protective role of maltose during temperature shock[J]. Plant Physiology,2004,135(3):1674-1684.
[18]KAPLAN F, GUY C L. RNA interference of Arabidopsis beta-amylase8 prevents maltose accumulation upon cold shock and increases sensitivity of PSⅡ photochemical efficiency to freezing stress[J]. The Plant Journal,2005,44(5):730-743.
[19]靳舒荣,王艳玫,常悦,等. 不同收获指数甘蓝型油菜β-淀粉酶活性及其基因家族成员的表达分析[J]. 作物学报,2019,45(8):1279-1285.
[20]郝心愿,岳川,唐湖,等. 茶树 β-淀粉酶基因CsBAM3的克隆及其响应低温的表达模式[J]. 作物学报,2017,43(10):1417-1425.
[21]杨泽峰,徐暑晖,王一凡,等. 禾本科植物β-淀粉酶基因家族分子进化及响应非生物胁迫的表达模式分析[J]. 科技导报,2014,32(31):29-36.
[22]YUE C, CAO H L, WANG L, et al. Effects of cold acclimation on sugar metabolism and sugar-related gene expression in tea plant during the winter season[J]. Plant Molecular Biology,2015,88(6):591-608.
[23]杜鹃,彭晓君,侯娟,等. 马铃薯淀粉酶StBAM9互作蛋白的鉴定及其互作机制分析[J]. 作物学报, 2023,49(10): 2643-2653.
[24]ZHAO L Y, GONG X, GAO J Z, et al. Transcriptomic and evolutionary analyses of white pear (Pyrus bretschneideri) β-amylase genes reveals their importance for cold and drought stress responses[J]. Gene,2019,689:102-113.
[25]CHEN H X, WANG T P, HE X N, et al. BRAD V3. 0:an upgraded Brassicaceae database[J]. Nucleic Acids Research,2022,50(D1):D1432-D1441.
[26]VOORRIPS R E. MapChart:software for the graphical presentation of linkage maps and QTLs[J]. Journal of Heredity,2002,93(1):77-78.
[27]CHEN C J, XIA R, CHEN H, et al. TBtools,a toolkit for biologists integrating various HTS-data handling tools with a user-friendly interface[J]. BioRxiv,2018:289660.
[28]LIU S Y, LIU Y M, YANG X H, et al. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes[J]. Nature Communications,2014,5:3930.
[29]MONROE J D, STORM A R. Review:the Arabidopsis β-amylase (BAM) gene family:diversity of form and function[J]. Plant Science,2018,276:163-170.
[30]HOU J, ZHANG H L, LIU J, et al. Amylases StAmy23,StBAM1 and StBAM9 regulate cold-induced sweetening of potato tubers in distinct ways[J]. Journal of Experimental Botany,2017,68(9):2317-2331.
[31]WANG X W, WANG H Z, WANG J, et al. The genome of the mesopolyploid crop species Brassica rapa[J]. Nature Genetics,2011,43(10):1035-1039.
[32]CHENG F, MANDKOV T, WU J, et al. Deciphering the diploid ancestral genome of the mesohexaploid Brassica rapa[J]. The Plant Cell,2013,25(5):1541-1554.
[33]THALMANN M, SANTELIA D. Starch as a determinant of plant fitness under abiotic stress[J]. New Phytologist,2017,214(3):943-951.
[34]GALANI YAMDEU J H, GUPTA P H, SHAH A K, et al. Profiling of StvacINV1,BAM1 and INH2α expressions in relation to acid invertase and β-amylase activities during development of cold-induced sweetening in Indian potato (Solanum tuberosum L.) tubers[J]. American Journal of Potato Research,2015,92(5):603-608.
[35]FULTON D C, STETTLER M, METTLER T, et al. Beta-AMYLASE4,a noncatalytic protein required for starch breakdown,acts upstream of three active beta-amylases in Arabidopsis chloroplasts[J]. The Plant Cell,2008,20(4):1040-1058.
[36]THALMANN M, COIRO M, MEIER T, et al. The evolution of functional complexity within the β-amylase gene family in land plants[J]. BMC Evolutionary Biology,2019,19(1):66.
[37]LI J, FRANCISCO P, ZHOU W X, et al. Catalytically-inactive beta-amylase BAM4 required for starch breakdown in Arabidopsis leaves is a starch-binding-protein[J]. Archives of Biochemistry and Biophysics,2009,489(1/2):92-98.

相似文献/References:

[1]闫圆圆,曾爱松,宋立晓,等.结球甘蓝幼苗耐热性鉴定方法及耐热生理[J].江苏农业学报,2016,(04):885.[doi:10.3969/j.issn.100-4440.2016.04.027]
 YAN Yuan-yuan,ZENG Ai-song,SONG Li-xiao,et al.Identification of heat tolerance in cabbage seedlings and heat-tolerant physiology[J].,2016,(02):885.[doi:10.3969/j.issn.100-4440.2016.04.027]
[2]戴忠良,陈丽,山溪,等.甘蓝晚抽薹基因BoFLC3克隆、序列分析和亚细胞定位[J].江苏农业学报,2018,(06):1324.[doi:doi:10.3969/j.issn.1000-4440.2018.06.018]
 DAI Zhong-liang,CHEN Li,SHAN Xi,et al.Cloning, sequence analysis and subcellular localization of Brassica oleraceaBoFLC3 gene[J].,2018,(02):1324.[doi:doi:10.3969/j.issn.1000-4440.2018.06.018]
[3]秦文斌,戴忠良,山溪,等.甘蓝冷胁迫相关基因BobHLH18克隆与表达分析[J].江苏农业学报,2019,(01):149.[doi:doi:10.3969/j.issn.1000-4440.2019.01.022]
 QIN Wen-bin,DAI Zhong-liang,SHAN Xi,et al.Molecular cloning and expression analysis of cold stress-related gene BobHLH18 in cabbage (Brassica oleracea var. capitata L.)[J].,2019,(02):149.[doi:doi:10.3969/j.issn.1000-4440.2019.01.022]
[4]郭峰,孙莹,安容慧,等.LED绿光处理对甘蓝采后品质及抗氧化活性的影响[J].江苏农业学报,2023,(02):489.[doi:doi:10.3969/j.issn.1000-4440.2023.02.022]
 GUO Feng,SUN Ying,AN Rong-hui,et al.Effects of green light-emitting diode light treatment on the quality and antioxidant capacity of postharvest green cabbage (Brassica oleracea var. capitata L.)[J].,2023,(02):489.[doi:doi:10.3969/j.issn.1000-4440.2023.02.022]
[5]刘志刚,余方伟,张伟,等.甘蓝黑斑病病原菌鉴定及其对杀菌剂的敏感性[J].江苏农业学报,2023,(04):947.[doi:doi:10.3969/j.issn.1000-4440.2023.04.004]
 LIU Zhi-gang,YU Fang-wei,ZHANG Wei,et al.Identification and fungicide sensitivity of the pathogen causing black spot on Brassica oleracea var. capitata L.[J].,2023,(02):947.[doi:doi:10.3969/j.issn.1000-4440.2023.04.004]

备注/Memo

备注/Memo:
收稿日期:2024-03-25基金项目:2024年度江苏省青年科技人才托举工程项目(JSTJ-2024-610);江苏省重点研发计划项目(BE2021399)作者简介:山溪(1990-), 女, 河南洛阳人, 硕士, 助理研究员, 主要从事甘蓝类蔬菜遗传育种研究。(E-mail)saiwaicanxue1990@163.com通讯作者:戴忠良,(E-mail)daizhongliang2008@126.com
更新日期/Last Update: 2025-03-27