参考文献/References:
[1]杨丽梅,方智远,张扬勇,等. 中国结球甘蓝抗病抗逆遗传育种近年研究进展[J]. 园艺学报,2020,47(9):1678-1688.
[2]CHINNUSAMY V, ZHU J H, ZHU J K. Cold stress regulation of gene expression in plants[J]. Trends in Plant Science,2007,12(10):444-451.
[3]徐磊,林碧英,林义章. 春化作用与甘蓝类蔬菜的生育障碍[J]. 亚热带植物科学,2002,31(4):73-76.
[4]张伟,余方伟,李建斌,等. 结球甘蓝CBF家族特征分析及低温诱导基因BoCBF1、BoCBF2a和BoCBF3的表达分析[J]. 江苏农业学报,2024,40(1):156-164.
[5]山溪,秦文斌,张振超,等. 甘蓝蔗糖磷酸合酶家族的鉴定和表达分析[J]. 江苏农业科学,2021,49(16):53-60.
[6]KAPLAN F, KOPKA J, SUNG D Y, et al. Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content[J]. Plant Journal,2007,50(6):967-981.
[7]MARUYAMA K, TAKEDA M, KIDOKORO S, et al. Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A[J]. Plant Physiology,2009,150(4):1972-1980.
[8]SONG Y, ZHANG X Y, LI M Z, et al. The direct targets of CBFs:in cold stress response and beyond[J]. Journal of Integrative Plant Biology,2021,63(11):1874-1887.
[9]LEE J H, YU D J, KIM S J, et al. Intraspecies differences in cold hardiness,carbohydrate content and β-amylase gene expression of Vaccinium corymbosum during cold acclimation and deacclimation[J]. Tree Physiology,2012,32(12):1533-1540.
[10]GUPTA A K, KAUR N. Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants[J]. Journal of Biosciences,2005,30(5):761-776.
[11]SMEEKENS S, MA J K, HANSON J, et al. Sugar signals and molecular networks controlling plant growth[J]. Current Opinion in Plant Biology,2010,13(3):273-278.
[12]STITT M, ZEEMAN S C. Starch turnover:pathways,regulation and role in growth[J]. Current Opinion in Plant Biology,2012,15(3):282-292.
[13]SUN S H, HU C G, QI X J, et al. The AaCBF4-AaBAM3.1 module enhances freezing tolerance of kiwifruit (Actinidia arguta)[J]. Horticulture Research,2021,8(1):97.
[14]MONROE J D, STORM A R, BADLEY E M, et al. β-amylase1 and β-amylase3 are plastidic starch hydrolases in Arabidopsis that seem to be adapted for different thermal,pH,and stress conditions[J]. Plant Physiology,2014,166(4):1748-1763.
[15]PENG T, ZHU X F, DUAN N, et al. PtrBAM1,a β-amylase-coding gene of Poncirus trifoliata,is a CBF regulon member with function in cold tolerance by modulating soluble sugar levels[J]. Plant,Cell & Environment,2014,37(12):2754-2767.
[16]SEKI M, NARUSAKA M, ABE H, et al. Monitoring the expression pattern of 1 300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray[J]. The Plant Cell,2001,13(1):61-72.
[17]KAPLAN F, GUY C L. β-amylase induction and the protective role of maltose during temperature shock[J]. Plant Physiology,2004,135(3):1674-1684.
[18]KAPLAN F, GUY C L. RNA interference of Arabidopsis beta-amylase8 prevents maltose accumulation upon cold shock and increases sensitivity of PSⅡ photochemical efficiency to freezing stress[J]. The Plant Journal,2005,44(5):730-743.
[19]靳舒荣,王艳玫,常悦,等. 不同收获指数甘蓝型油菜β-淀粉酶活性及其基因家族成员的表达分析[J]. 作物学报,2019,45(8):1279-1285.
[20]郝心愿,岳川,唐湖,等. 茶树 β-淀粉酶基因CsBAM3的克隆及其响应低温的表达模式[J]. 作物学报,2017,43(10):1417-1425.
[21]杨泽峰,徐暑晖,王一凡,等. 禾本科植物β-淀粉酶基因家族分子进化及响应非生物胁迫的表达模式分析[J]. 科技导报,2014,32(31):29-36.
[22]YUE C, CAO H L, WANG L, et al. Effects of cold acclimation on sugar metabolism and sugar-related gene expression in tea plant during the winter season[J]. Plant Molecular Biology,2015,88(6):591-608.
[23]杜鹃,彭晓君,侯娟,等. 马铃薯淀粉酶StBAM9互作蛋白的鉴定及其互作机制分析[J]. 作物学报, 2023,49(10): 2643-2653.
[24]ZHAO L Y, GONG X, GAO J Z, et al. Transcriptomic and evolutionary analyses of white pear (Pyrus bretschneideri) β-amylase genes reveals their importance for cold and drought stress responses[J]. Gene,2019,689:102-113.
[25]CHEN H X, WANG T P, HE X N, et al. BRAD V3. 0:an upgraded Brassicaceae database[J]. Nucleic Acids Research,2022,50(D1):D1432-D1441.
[26]VOORRIPS R E. MapChart:software for the graphical presentation of linkage maps and QTLs[J]. Journal of Heredity,2002,93(1):77-78.
[27]CHEN C J, XIA R, CHEN H, et al. TBtools,a toolkit for biologists integrating various HTS-data handling tools with a user-friendly interface[J]. BioRxiv,2018:289660.
[28]LIU S Y, LIU Y M, YANG X H, et al. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes[J]. Nature Communications,2014,5:3930.
[29]MONROE J D, STORM A R. Review:the Arabidopsis β-amylase (BAM) gene family:diversity of form and function[J]. Plant Science,2018,276:163-170.
[30]HOU J, ZHANG H L, LIU J, et al. Amylases StAmy23,StBAM1 and StBAM9 regulate cold-induced sweetening of potato tubers in distinct ways[J]. Journal of Experimental Botany,2017,68(9):2317-2331.
[31]WANG X W, WANG H Z, WANG J, et al. The genome of the mesopolyploid crop species Brassica rapa[J]. Nature Genetics,2011,43(10):1035-1039.
[32]CHENG F, MANDKOV T, WU J, et al. Deciphering the diploid ancestral genome of the mesohexaploid Brassica rapa[J]. The Plant Cell,2013,25(5):1541-1554.
[33]THALMANN M, SANTELIA D. Starch as a determinant of plant fitness under abiotic stress[J]. New Phytologist,2017,214(3):943-951.
[34]GALANI YAMDEU J H, GUPTA P H, SHAH A K, et al. Profiling of StvacINV1,BAM1 and INH2α expressions in relation to acid invertase and β-amylase activities during development of cold-induced sweetening in Indian potato (Solanum tuberosum L.) tubers[J]. American Journal of Potato Research,2015,92(5):603-608.
[35]FULTON D C, STETTLER M, METTLER T, et al. Beta-AMYLASE4,a noncatalytic protein required for starch breakdown,acts upstream of three active beta-amylases in Arabidopsis chloroplasts[J]. The Plant Cell,2008,20(4):1040-1058.
[36]THALMANN M, COIRO M, MEIER T, et al. The evolution of functional complexity within the β-amylase gene family in land plants[J]. BMC Evolutionary Biology,2019,19(1):66.
[37]LI J, FRANCISCO P, ZHOU W X, et al. Catalytically-inactive beta-amylase BAM4 required for starch breakdown in Arabidopsis leaves is a starch-binding-protein[J]. Archives of Biochemistry and Biophysics,2009,489(1/2):92-98.
相似文献/References:
[1]闫圆圆,曾爱松,宋立晓,等.结球甘蓝幼苗耐热性鉴定方法及耐热生理[J].江苏农业学报,2016,(04):885.[doi:10.3969/j.issn.100-4440.2016.04.027]
YAN Yuan-yuan,ZENG Ai-song,SONG Li-xiao,et al.Identification of heat tolerance in cabbage seedlings and heat-tolerant physiology[J].,2016,(02):885.[doi:10.3969/j.issn.100-4440.2016.04.027]
[2]戴忠良,陈丽,山溪,等.甘蓝晚抽薹基因BoFLC3克隆、序列分析和亚细胞定位[J].江苏农业学报,2018,(06):1324.[doi:doi:10.3969/j.issn.1000-4440.2018.06.018]
DAI Zhong-liang,CHEN Li,SHAN Xi,et al.Cloning, sequence analysis and subcellular localization of Brassica oleraceaBoFLC3 gene[J].,2018,(02):1324.[doi:doi:10.3969/j.issn.1000-4440.2018.06.018]
[3]秦文斌,戴忠良,山溪,等.甘蓝冷胁迫相关基因BobHLH18克隆与表达分析[J].江苏农业学报,2019,(01):149.[doi:doi:10.3969/j.issn.1000-4440.2019.01.022]
QIN Wen-bin,DAI Zhong-liang,SHAN Xi,et al.Molecular cloning and expression analysis of cold stress-related gene BobHLH18 in cabbage (Brassica oleracea var. capitata L.)[J].,2019,(02):149.[doi:doi:10.3969/j.issn.1000-4440.2019.01.022]
[4]郭峰,孙莹,安容慧,等.LED绿光处理对甘蓝采后品质及抗氧化活性的影响[J].江苏农业学报,2023,(02):489.[doi:doi:10.3969/j.issn.1000-4440.2023.02.022]
GUO Feng,SUN Ying,AN Rong-hui,et al.Effects of green light-emitting diode light treatment on the quality and antioxidant capacity of postharvest green cabbage (Brassica oleracea var. capitata L.)[J].,2023,(02):489.[doi:doi:10.3969/j.issn.1000-4440.2023.02.022]
[5]刘志刚,余方伟,张伟,等.甘蓝黑斑病病原菌鉴定及其对杀菌剂的敏感性[J].江苏农业学报,2023,(04):947.[doi:doi:10.3969/j.issn.1000-4440.2023.04.004]
LIU Zhi-gang,YU Fang-wei,ZHANG Wei,et al.Identification and fungicide sensitivity of the pathogen causing black spot on Brassica oleracea var. capitata L.[J].,2023,(02):947.[doi:doi:10.3969/j.issn.1000-4440.2023.04.004]