[1]曹梦娇,白石,唐攀攀,等.基于无人机多光谱遥感的水稻二化螟冬前虫量测算[J].江苏农业学报,2025,(02):305-312.[doi:doi:10.3969/j.issn.1000-4440.2025.02.011]
 CAO Mengjiao,BAI Shi,TANG Panpan,et al.Estimation of the pre-winter population of Chilo suppressalis in rice field based on unmanned aerial vehicle multi-spectral remote sensing[J].,2025,(02):305-312.[doi:doi:10.3969/j.issn.1000-4440.2025.02.011]
点击复制

基于无人机多光谱遥感的水稻二化螟冬前虫量测算()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年02期
页码:
305-312
栏目:
农业信息工程
出版日期:
2025-02-28

文章信息/Info

Title:
Estimation of the pre-winter population of Chilo suppressalis in rice field based on unmanned aerial vehicle multi-spectral remote sensing
作者:
曹梦娇1白石2唐攀攀2徐红星3王晔青1周国鑫4
(1.嘉兴市土肥植保与农村能源站,浙江嘉兴314100;2.南湖实验室大数据技术研究中心,浙江嘉兴314100;3.浙江省农业科学院植物保护与微生物研究所,浙江杭州310000;4.浙江农林大学现代农学院,浙江杭州311300)
Author(s):
CAO Mengjiao1BAI Shi2TANG Panpan2XU Hongxing3WANG Yeqing1ZHOU Guoxin4
(1.Jiaxing Soil Fertilizer, Plant Protection and Rural Energy Station, Jiaxing 314100, China;2.Big Data Technology Research Center, Nanhu Laboratory, Jiaxing 314100, China;3.Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China;4.College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China)
关键词:
二化螟冬前虫量多光谱随机森林双时相
Keywords:
Chilo suppressalispre-winter population of insectsmultispectralrandom forestdouble phases
分类号:
S431.9
DOI:
doi:10.3969/j.issn.1000-4440.2025.02.011
文献标志码:
A
摘要:
为实现稻田二化螟冬前虫量的精确测算,本研究在二化螟差异化防控的基础上,利用无人机获取水稻灌浆期和蜡熟期的双时相多光谱数据,并结合虫量稳定期的冬前虫量田间调查,基于线性回归、支持向量机回归、随机森林回归、岭回归、Lasso回归和贝叶斯回归等方法构建稻田二化螟冬前虫量的遥感估算模型。结果表明,灌浆期450 nm(b1)、660 nm(b3)波段的光谱反射率和蜡熟期的归一化植被指数(NDVI)与稻田二化螟冬前虫量存在极显著的线性相关;不同回归方法下,采用双时相数据建立的稻田二化螟冬前虫量遥感估算模型的估算值与观测值的相关性整体上优于单时相数据,其中,基于双时相遥感数据和随机森林回归模型建立的估算方法最佳,测试集和训练集的估算虫量和观测虫量相关系数分别达0.85和0.94,且此方法下稻田二化螟冬前虫量的估算结果更符合田间实际情况。本研究基于无人机技术建立的稻田二化螟冬前虫量估算方法,可为稻田二化螟的精确防控提供依据。
Abstract:
In order to accurately estimate the pre-winter population of Chilo suppressalis in paddy fields, based on differentiated prevention and control of C. suppressalis, this study used unmanned aerial vehicle (UAV) to obtain double-phase multi-spectral data of rice at filling stage and wax ripening stage. And combined with the field survey of pre-winter population in the stable period of insect population, based on linear regression, support vector machine regression, random forest regression, ridge regression, Lasso regression and Bayesian regression, the remote sensing estimation model of pre-winter population of C. suppressalis in paddy fields was constructed. The results showed that the spectral reflectance of 450 nm (b1) and 660 nm (b3) bands at the filling stage and the normalized difference vegetation index (NDVI) at the ripening stage were in extremely significantly linear correlation with the pre-winter population of C. suppressalis in paddy fields. Under different regression methods, the correlations between the estimated value and the observed value of the remote sensing estimation model of the pre-winter population of C. suppressalis in rice fields established by using double-phase data were better than those of the single-phase data. Among them, the estimation method based on double-phase remote sensing data and random forest regression model was the best. The correlation coefficients between the estimated and observed population of C. suppressalis in the test set and the training set were 0.85 and 0.94, respectively, and the estimation results of the pre-winter population of C. suppressalis in rice fields under this method were more in line with the actual situation in the fields. Based on UAV technology, this study established an estimation method for the pre-winter population of C. suppressalis in paddy fields, which provided a basis for accurate prevention and control of C. suppressalis in paddy fields.

参考文献/References:

[1]洪晓月. 农业昆虫学[M]. 3版. 北京:中国农业出版社,2017:77-80.
[2]付虹雨,王薇,卢建宁,等. 基于无人机多光谱遥感和机器学习的苎麻理化性状估测[J]. 农业机械学报,2023,54(5):194-200,347.
[3]向友珍,安嘉琪,赵笑,等. 基于无人机多光谱遥感的大豆生长参数和产量估算[J]. 农业机械学报,2023,54(8):230-239.
[4]姜友谊,刘博伟,张成健,等. 利用无人机多光谱影像的多品种玉米成熟度监测[J]. 农业工程学报,2023,39(20):84-91.
[5]苏宝峰,刘砥柱,陈启帆,等. 基于时间序列植被指数的小麦条锈病抗性等级鉴定方法[J]. 农业工程学报,2024,40(4):155-165.
[6]DHAU I, ADAM E, MUTANGA O, et al. Detecting the severity of maize streak virus infestations in maize crop using in situ hyperspectral data[J]. Transactions of the Royal Society of South Africa,2018,73(1):8-15.
[7]杨宁,张天纬,张钊源,等. 水稻病害孢子多光谱衍射识别与病害源定位方法研究[J]. 农业机械学报,2023,54(4):250-258.
[8]严海军,卓越,李茂娜,等. 基于机器学习和无人机多光谱遥感的苜蓿产量预测[J]. 农业工程学报,2022,38(11):64-71.
[9]向友珍,安嘉琪,赵笑,等. 基于无人机多光谱遥感的大豆生长参数和产量估算[J]. 农业机械学报,2023,54(8):230-239.
[10]胡田田,赵璐,崔晓路,等. 无人机多光谱数据可靠性分析与冬小麦产量估算研究[J]. 农业机械学报,2023,54(12):217-225.
[11]CHIVASA W, MUTANGA O, BURGUEO J. UAV-based high-throughput phenotyping to increase prediction and selection accuracy in maize varieties under artificial MSV inoculation[J]. Computers and Electronics in Agriculture,2021,184:106128.
[12]FENNELL J, VEYS C, DINGLE J, et al. A method for real-time classification of insect vectors of mosaic and brown streak disease in cassava plants for future implementation within a low-cost,handheld,in-field multispectral imaging sensor[J]. Plant Methods,2018,14:82.
[13]彭要奇,肖颖欣,郑永军,等. 无人机光谱成像技术在大田中的应用研究进展[J]. 光谱学与光谱分析,2020,40(5):1356-1361.
[14]赵晋陵,金玉,叶回春,等. 基于无人机多光谱影像的槟榔黄化病遥感监测[J]. 农业工程学报,2020,36(8):54-61.
[15]MANDAL N, ADAK S, DAS D K, et al. Spectral characterization and severity assessment of rice blast disease using univariate and multivariate models[J]. Frontiers in Plant Science,2023,14:1067189.
[16]郭铭淇,包云轩,黄璐,等. 无人机多光谱影像在稻纵卷叶螟危害监测中的应用[J]. 江苏农业学报,2023,39(7):1530-1542.
[17]杨丽丽,张大卫,罗君,等. 基于SVM和AdaBoost的棉叶螨危害等级识别[J]. 农业机械学报,2019,50(2):14-20.
[18]LIU X D, SUN Q H. Early assessment of the yield loss in rice due to the brown planthopper using a hyperspectral remote sensing method[J]. International Journal of Pest Management,2016,62(3):205-213.
[19]KASINATHAN T, SINGARAJU D, UYYALA S R. Insect classification and detection in field crops using modern machine learning techniques[J]. Information Processing in Agriculture,2021,8(3):446-457.
[20]TUDA M, LUNA-MALDONADO A I. Image-based insect species and gender classification by trained supervised machine learning algorithms[J]. Ecological Informatics,2020,60:101135.
[21]MARKOVIC D, VUJICIC D, TANASKOVIC S, et al. Prediction of pest insect appearance using sensors and machine learning[J]. Sensors,2021,21(14):4846.
[22]王震,李映雪,吴芳,等. 冠层光谱红边参数结合随机森林机器学习估算冬小麦叶绿素含量[J]. 农业工程学报,2024,40(4):166-176.
[23]汪航,师茁,王岩,等. 基于MODIS时间序列数据的春尺蠖虫害遥感监测方法研究——以新疆巴楚胡杨为例[J]. 遥感技术与应用, 2018, 33(4): 686-695.
[24]OLSSON P O, LINDSTRM J, EKLUNDH L. Near real-time monitoring of insect induced defoliation in subalpine birch forests with MODIS derived NDVI[J]. Remote Sensing of Environment,2016,181:42-53.
[25]GREENE A D, REAY-JONES F P F, KIRK K R, et al. Spatial associations of key lepidopteran pests with defoliation,NDVI,and plant height in soybean[J]. Environmental Entomology,2021,50(6):1378-1392.

相似文献/References:

[1]胡代花.中国水稻二化螟性信息素研究及应用新进展[J].江苏农业学报,2019,(03):736.[doi:doi:10.3969/j.issn.1000-4440.2019.03.033]
 HU Dai-hua.Recent advances in the research and application of sex pheromone of Chilo suppressalis(Walker) in China[J].,2019,(02):736.[doi:doi:10.3969/j.issn.1000-4440.2019.03.033]
[2]徐鹿,罗光华,金瑜剑,等.转录组测序分析毒死蜱与醚菊酯混配对二化螟毒杀的增效机制[J].江苏农业学报,2021,(02):317.[doi:doi:10.3969/j.issn.1000-4440.2021.02.006]
 XU Lu,LUO Guang-hua,JIN Yu-jian,et al.Study on the synergistic mechanism of chlorpyrifos and ethofenprox mixture in poisoning Chilo suppressalis based on transcriptome sequencing[J].,2021,(02):317.[doi:doi:10.3969/j.issn.1000-4440.2021.02.006]

备注/Memo

备注/Memo:
收稿日期:2024-06-19基金项目:浙江省重点研发计划项目(2022C02034);浙江省粮油产业技术项目;浙江省农业重大技术协同推广计划项目(2023ZDXT01-5)作者简介:曹梦娇(1990-),女,浙江嘉兴人,硕士,农艺师,研究方向为农作物病虫害监测预警。(E-mail)1240562399@ qq. com通讯作者:徐红星,(E-mail)hzxuhongxing@163.com
更新日期/Last Update: 2025-03-27