[1]董岳,胡奕婷,张辉,等.土壤含盐量对滨海盐渍农田土壤氮素转化和淋失特征的影响[J].江苏农业学报,2025,(02):296-304.[doi:doi:10.3969/j.issn.1000-4440.2025.02.010]
 DONG Yue,HU Yiting,ZHANG Hui,et al.Effect of soil salt content on the characteristics of nitrogen transformation and leaching in soils of coastal saline farmland[J].,2025,(02):296-304.[doi:doi:10.3969/j.issn.1000-4440.2025.02.010]
点击复制

土壤含盐量对滨海盐渍农田土壤氮素转化和淋失特征的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年02期
页码:
296-304
栏目:
耕作栽培·资源环境
出版日期:
2025-02-28

文章信息/Info

Title:
Effect of soil salt content on the characteristics of nitrogen transformation and leaching in soils of coastal saline farmland
作者:
董岳123胡奕婷14张辉5徐聪123聂亚锋1马艳123汪吉东12
(1.江苏省农业科学院农业资源与环境研究所,江苏南京210014;2.农业农村部盐碱土改良与利用<滨海盐碱地>重点实验室,江苏南京210014;3.国家盐碱地综合利用创新中心盐城试验站,江苏盐城224000;4.安徽科技学院资源与环境学院,安徽凤阳233100;5.江苏省农业科学院农产品质量安全与营养研究所,江苏南京210014)
Author(s):
DONG Yue123HU Yiting14ZHANG Hui5XU Cong123NIE Yafeng1MA Yan123WANG Jidong12
(1.Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;2.Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Nanjing 210014, China;3.Experimental Station of Yancheng, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Lands, Yancheng 224000, China;4.College of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, China;5.Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China)
关键词:
滨海盐渍土土壤盐分硝化作用硝态氮淋失氮素迁移转化
Keywords:
coastal saline soilsoil salinitynitrificationnitrate nitrogen leachingtransport and transformation of nitrogen
分类号:
S156.4+2
DOI:
doi:10.3969/j.issn.1000-4440.2025.02.010
文献标志码:
A
摘要:
为明确土壤含盐量对滨海盐渍农田土壤氮素转化和淋失特征的影响,本研究设置4个土壤含盐量水平[CK(含盐量< 1 g/kg)、S1(含盐量2 g/kg)、S2(含盐量3 g/kg)、S3(含盐量5 g/kg)],进行120 d的模拟淋溶试验,动态监测土壤和淋溶液中铵态氮(NH+4-N)和硝态氮(NO-3-N)含量,明确土壤含盐量对氮素转化和淋失特征的影响及其机制。结果表明,相比于CK和S1处理,高土壤含盐量(≥3 g/kg)延缓了S2和S3处理土壤NH+4-N和NO-3-N含量达到峰值的时间,并显著降低了土壤NO-3-N含量的峰值。高土壤含盐量显著影响了NH+4-N淋失特征:相较于CK和S1处理,S2和S3处理淋溶液NH+4-N质量浓度峰值更低、到达峰值时间更晚。但土壤含盐量未对NO-3-N淋失特征(NO-3-N质量浓度和淋失量)产生显著影响。监测期间土壤和淋溶液NO-3-N含量(质量浓度)呈现“双峰值”变化趋势:除施肥后30 d内土壤和淋溶液NO-3-N含量(质量浓度)上升外,施肥第45 d后,土壤和淋溶液NO-3-N含量(质量浓度)再次显著升高。方差分解分析结果显示,水输入量和氮转化过程的综合效应是决定NO-3-N淋失的主要因素。综上,当土壤含盐量≥3 g/kg时,盐分显著抑制尿素的水解和硝化作用。但受高水输入量影响,盐分对NO-3-N淋失没有显著影响。水输入量的降低会导致NO-3-N的累积并增加施肥后期的淋失风险。因此,作物生长期合理的水肥管理结合休耕期种植覆盖作物可有效减少滨海盐渍农田NO-3-N淋失。
Abstract:
To explore the influence of soil salt content on characteristics of nitrogen transformation and nitrate nitrogen (NO-3-N) leaching in coastal saline soils, a 120-day soil column experiment was conducted to simulate leaching experiment, with four treatments of different soil salinity levels (CK:<1 g/kg; S1: 2 g/kg; S2: 3 g/kg; S3: 5 g/kg). The dynamic variations of ammonium (NH+4-N) and NO-3-N contents in soils and leachates were monitored to determine the influences of soil salt content on the characteristics of nitrogen transformation and NO-3-N leaching, and the mechanisms were studied. The results showed that compared with CK and S1 treatments, high soil salinity (≥ 3 g/kg) delayed the peak time of the soil NH+4-N and NO-3-N contents under S2 and S3 treatments. Meanwhile, the peak value of soil NO-3-N content was significantly decreased. High soil salinity significantly influenced the characteristics of NH+4-N leaching. Compared with CK and S1 treatments, the peak values of NH+4-N mass concentration of leachates under S2 and S3 treatments were lower, with later peak time. However, the soil salt content showed no significant influence on the leaching characteristics of NO-3-N mass concentrations in leachates and NO-3-N leaching amount. The mass concentrations of NO-3-N in soils and leachates both showed a “two-peak” variation during the detection period. Besides the obvious increase within 30-day after fertilization, NO-3-N contents increased significantly again in soils and leachates 45 days after fertilization. Variation partitioning analysis showed that the combined effect of water input and nitrogen transformation mainly determined NO-3-N leaching. Therefore, when the soil salt content was ≥3 g/kg, soil salinity significantly inhibited urea hydrolysis and nitrification processes. However, due to the influence of high water input, soil salinity showed no obvious effect on the NO-3-N leaching. The decrease of water input in the later period of fertilization might lead to obvious soil accumulation of NO-3-N, and might increase the risk of NO-3-N leaching. Thus, rational water management during the crop growth period and planting cover crop during the fallow period are proposed to ameliorate NO-3-N leaching and increase nitrogen use efficiency.

参考文献/References:

[1]杨劲松,姚荣江,王相平,等. 防止土壤盐渍化, 提高土壤生产力[J]. 科学,2021,73(6):30-34.
[2]胡炎,杨帆,杨宁,等. 盐碱地资源分析及利用研究展望[J]. 土壤通报,2023,54(2):489-494.
[3]曹晓风,孙波,陈化榜,等. 我国边际土地产能扩增和生态效益提升的途径与研究进展[J]. 中国科学院院刊,2021,36(3):336-348.
[4]杨劲松,姚荣江,王相平,等. 中国盐渍土研究:历程、现状与展望[J]. 土壤学报,2022,59(1):10-27.
[5]李红强,姚荣江,杨劲松,等. 盐渍化对农田氮素转化过程的影响机制和增效调控途径[J]. 应用生态学报,2020,31(11):3915-3924.
[6]ZHANG D M, LI W J, XIN C S, et al. Lint yield and nitrogen use efficiency of field-grown cotton vary with soil salinity and nitrogen application rate[J]. Field Crops Research,2012,138:63-70.
[7]ZHU W, YANG J S, YAO R J, et al. Nitrate leaching and NH3 volatilization during soil reclamation in the Yellow River Delta, China[J]. Environmental Pollution,2021,286(8):117330.
[8]BILLEN G, GARNIER J, LASSALETTA L. The nitrogen cascade from agricultural soils to the sea:modelling nitrogen transfers at regional watershed and global scales[J]. Philosophical Transactions of the Royal Society of London. Series B,Biological Sciences,2013,368(1621):20130123.
[9]沈仁芳,王超,孙波. “藏粮于地、藏粮于技” 战略实施中的土壤科学与技术问题[J]. 中国科学院院刊,2018,33(2):135-144.
[10]GU B, ZHANG X, LAM S K, et al. Cost-effective mitigation of nitrogen pollution from global croplands[J]. Nature,2023,613(7942):77-84.
[11]彭新华,王云强,贾小旭,等. 新时代中国土壤物理学主要领域进展与展望[J]. 土壤学报,2020,57(5):1071-1087.
[12]DONG Y, YANG J L, ZHAO X R, et al. Nitrate leaching and N accumulation in a typical subtropical red soil with N fertilization[J]. Geoderma,2022,407:115559.
[13]ANGELA L, MASSIMO M. Soil vs. groundwater:the quality dilemma. Managing nitrogen leaching and salinity control under irrigated agriculture in Mediterranean conditions[J]. Agricultural Water Management,2017,186:40-50.
[14]FENG Z Z, WANG X K, FENG Z W. Soil N and salinity leaching after the autumn irrigation and its impact on groundwater in Hetao Irrigation District, China[J]. Agricultural Water Management,2005,71(2):131-143.
[15]MERCHN D, CAUSAPA J, ABRAHO R, et al. Assessment of a newly implemented irrigated area (Lerma Basin, Spain) over a 10-year period. Ⅱ:salts and nitrate exported[J]. Agricultural Water Management,2015,158:288-296.
[16]YAO R J, LI H Q, YANG J S, et al. Biochar addition inhibits nitrification by shifting community structure of ammonia-oxidizing microorganisms in salt-affected irrigation-silting soil[J]. Microorganisms,2022,10(2):436.
[17]HUANG Q Z, HUANG G H. Effect of NaCl salt on mineralization and nitrification of a silt loam soil in the North China Plain[J]. International Journal of Agricultural and Biological Engineering,2009,2(2):14-23.
[18]ZHOU M H, BUTTERBACH-BAHL K, VEREECKEN H, et al. A meta-analysis of soil salinization effects on nitrogen pools, cycles and fluxes in coastal ecosystems[J]. Global Change Biology,2017,23(3):1338-1352.
[19]ZHU H, YANG J S, LI Y L, et al. Effects of soil salinity on nitrification and ammonia-oxidizing microorganisms in coastal reclaimed farmland soil[J], Journal of Soil Science and Plant Nutrition,2022,22(2):2743-2754.
[20]李亚威,徐俊增,卫琦,等. 不同水盐条件下盐渍土硝化过程特征[J]. 排灌机械工程学报,2018,36(9):909-913.
[21]陆宇辰,王冲,刘萌丽. 灌水量对滨海盐碱土中盐分和尿素氮淋洗特征的影响[J]. 土壤通报,2019,50(6):1442-1446.
[22]梅芹芹,龚绪龙,史雅栋,等. 江苏沿海盐渍土盐渍化程度及其影响因素分析[J]. 工程地质学报,2020,28(5):959-965.
[23]王遵亲,祝寿泉,俞仁培,等. 中国盐渍土[M]. 北京:科学出版社,1993.
[24]ZENG W Z, MA T, HUANG J S, et al. Nitrogen transportation and transformation under different soil water and salinity conditions[J].Ecological Chemistry and Engineering Sciences,2016,23(4):677-693.
[25]ZHU H Y, GAN J B, XU J B, et al. Effect of soil salinity on nitrogen transformation in soil with nitrogen fertilizer application[J]. Applied Ecology and Environmental Research,2023,21(6):5625-5642.
[26]CHEN Q, QI L, BI Q, et al. Comparative effects of 3,4-dimethylpyrazole phosphate (DMPP) and dicyandiamide (DCD) on ammonia-oxidizing bacteria and archaea in a vegetable soil[J]. Applied Microbiology and Biotechnology,2015,99(1):477-487.
[27]WHITE J R, REDDY K R. Nitrification and denitrification rates of everglades wetland soils along a phosphorus-impacted gradient[J]. Journal of Environmental Quality,2003,32(6):2436-2443.
[28]徐万里,刘骅,张云舒. 新疆盐渍化土壤氮素矿化和硝化作用特征[J]. 西北农林科技大学学报(自然科学版),2007,35(11):141-145.
[29]DENDOOVEN L, ALCNTARA-HERNNDEZ R J, VALENZUELA-ENCINAS C, et al. Dynamics of carbon and nitrogen in an extreme alkaline saline soil:a review[J]. Soil Biology and Biochemistry,2010,42(6):865-877.
[30]AKHTAR M, HUSSAIN F, ASHRAF M Y, et al. Influence of salinity on nitrogen transformations in soil[J]. Communications in Soil Science and Plant Analysis,2012,43(12):1674-1683.
[31]ERISMAN J W, SUTTON M A, GALLOWAY J, et al. How a century of ammonia synthesis changed the world[J]. Nature Geoscience,2008,1:636-639.
[32]DONG Y, YANG J L, ZHAO X R, et al. Nitrate leaching characteristics of red soils from different parent materials in subtropical China[J]. Science of the Total Environment,2024,915:170049.
[33]DI H J, CAMERON K C. Nitrate leaching in temperate agroecosystems:sources,factors and mitigating strategies[J]. Nutrient Cycling in Agroecosystems,2002,64(3):237-256.
[34]SEBILO M, MAYER B, NICOLARDOT B, et al. Long-term fate of nitrate fertilizer in agricultural soils[J]. Proceedings of the National Academy of Sciences,2013,110(45):18185-18189.

相似文献/References:

[1]郑旭,赵文静,刘兴满,等.苏北滨海盐渍土土壤基本性质及其对中山杉生长的影响[J].江苏农业学报,2023,(09):1854.[doi:doi:10.3969/j.issn.1000-4440.2023.09.007]
 ZHENG Xu,ZHAO Wen-jing,LIU Xing-man,et al.Basic properties of coastal saline soil in northern Jiangsu and their effects on the growth of Taxodium ‘Zhongshanshan’[J].,2023,(02):1854.[doi:doi:10.3969/j.issn.1000-4440.2023.09.007]

备注/Memo

备注/Memo:
收稿日期:2024-11-28基金项目:江苏省自然科学基金项目(BK20241171);江苏省农业科技自主创新基金项目[CX(23)1019];江苏省科技计划项目(BE2023354)作者简介:董岳(1993-),男,山东淄博人,博士,助理研究员,研究方向为中低产田改良与地力提升。(E-mail)ydong@jaas.ac.cn通讯作者:汪吉东,(E-mail)jidongwang@jaas.ac.cn收稿日期:2024-11-28基金项目:江苏省自然科学基金项目(BK20241171);江苏省农业科技自主创新基金项目[CX(23)1019];江苏省科技计划项目(BE2023354)作者简介:董岳(1993-),男,山东淄博人,博士,助理研究员,研究方向为中低产田改良与地力提升。(E-mail)ydong@jaas.ac.cn通讯作者:汪吉东,(E-mail)jidongwang@jaas.ac.cn
更新日期/Last Update: 2025-03-27