参考文献/References:
[1]孔晨晨,张世文,王维瑞,等. 不同连作年限设施农用地土壤有机碳与细菌群落功能特征[J]. 农业机械学报,2024,55(2):326-337.
[2]王静,程昱润,肖国举,等. 宁夏银北不同草田轮作模式对细菌群落组成特征的影响[J]. 农业机械学报,2021,52(7):283-292.
[3]顾美英,徐万里,马凯,等. 不同定植年限核桃园土壤细菌群落多样性及碳代谢功能特征[J]. 生态学杂志,2021,40(7):2045-2056.
[4]XUAN D T, GUONG V T, ROSLING A, et al. Different crop rotation systems as drivers of change in soil bacterial community structure and yield of rice,Oryza sativa[J]. Biology and Fertility of Soils,2012,48(2):217-225.
[5]PETERS R D, STURZ A V, CARTER M R, et al. Developing disease-suppressive soils through crop rotation and tillage management practices[J]. Soil and Tillage Research,2003,72(2):181-192.
[6]李戌清,张雅,田忠玲,等. 茄子连作与轮作土壤养分、酶活性及微生物群落结构差异分析[J]. 浙江大学学报(农业与生命科学版),2017,43(5):561-569.
[7]李文娇,杨殿林,赵建宁,等. 长期连作和轮作对农田土壤生物学特性的影响研究进展[J]. 中国农学通报,2015,31(3):173-178.
[8]MARSCHNER P, CROWLEY D, YANG C H. Development of specific rhizosphere bacterial communities in relation to plant species,nutrition and soil type[J]. Plant and Soil,2004,261(1):199-208.
[9]ZHAO J, ZHANG R F, XUE C, et al. Pyrosequencing reveals contrasting soil bacterial diversity and community structure of two main winter wheat cropping systems in China[J]. Microbial Ecology,2014,67(2):443-453.
[10]SUN B, DONG Z X, ZHANG X X, et al. Rice to vegetables:short-versus long-term impact of land-use change on the indigenous soil microbial community[J]. Microbial Ecology,2011,62(2):474-485.
[11]宋丹丹. 东北黑土区不同土地利用方式对土壤细菌群落结构的影响[D]. 哈尔滨:哈尔滨师范大学,2023.
[12]陈孟立,曾全超,黄懿梅,等. 黄土丘陵区退耕还林还草对土壤细菌群落结构的影响[J]. 环境科学,2018,39(4):1824-1832.
[13]CUI J W, SONG D L, DAI X L, et al. Effects of long-term cropping regimes on SOC stability,soil microbial community and enzyme activities in the Mollisol region of Northeast China[J]. Applied Soil Ecology,2021,164:103941.
[14]南丽丽,谭杰辉,郭全恩. 黄土高原半干旱区轮作休耕模式对土壤真菌的影响[J]. 生态学报,2020,40(23):8582-8592.
[15]CHAMBERLAIN L A, WHITMAN T, AN J M, et al. Corn-soybean rotation,tillage,and foliar fungicides:Impacts on yield and soil fungi[J]. Field Crops Research,2021,262:108030.
[16]邓超超,李玲玲,谢军红,等. 耕作措施对陇中旱农区土壤细菌群落的影响[J]. 土壤学报,2019,56(1):207-216.
[17]YAN S S, SONG J M, FAN J S, et al. Changes in soil organic carbon fractions and microbial community under rice straw return in Northeast China[J]. Global Ecology and Conservation,2020,22:e00962.
[18]GONG X W, LIU C J, LI J, et al. Responses of rhizosphere soil properties,enzyme activities and microbial diversity to intercropping patterns on the Loess Plateau of China[J]. Soil and Tillage Research,2019,195:104355.
[19]VAN DER HEIJDEN M G A, BARDGETT R D, VAN STRAALEN N M. The unseen majority:soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems[J]. Ecology Letters,2008,11(3):296-310.
[20]张向前,杨文飞,徐云姬. 中国主要耕作方式对旱地土壤结构及养分和微生态环境影响的研究综述[J]. 生态环境学报,2019,28(12):2464-2472.
[21]VENKATESWARLU B, SRINIVASARAO C. Soil Microbial Diversity and the Impact of Agricultural Practices[J]. Indian Journal of Dryland Agricultural Research and Development,2004,19(2):97-105.
[22]CHAER G, FERNANDES M, MYROLD D, et al. Comparative resistance and resilience of soil microbial communities and enzyme activities in adjacent native forest and agricultural soils[J]. Microbial Ecology,2009,58(2):414-424.
[23]YAO H Y, JIAO X D, WU F Z. Effects of continuous cucumber cropping and alternative rotations under protected cultivation on soil microbial community diversity[J]. Plant and Soil,2006,284(1):195-203.
[24]FIERER N, JACKSON R B. The diversity and biogeography of soil bacterial communities[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(3):626-631.
[25]任益,刘鸿雁,吴龙华,等. 黔西北土壤重金属高区晚疫病马铃薯根际土壤真菌群落特征[J]. 生态学杂志,2023,42(9):2148-2155.
[26]NAYYAR A, HAMEL C, LAFOND G, et al. Soil microbial quality associated with yield reduction in continuous-pea[J]. Applied Soil Ecology,2009,43(1):115-121.
[27]张瑞福,沈其荣. 抑病型土壤的微生物区系特征及调控[J]. 南京农业大学学报,2012,35(5):125-132.
[28]WEN X Y, DUBINSKY E, WU Y, et al. Wheat,maize and sunflower cropping systems selectively influence bacteria community structure and diversity in their and succeeding crop’s rhizosphere[J]. Journal of Integrative Agriculture,2016,15(8):1892-1902.
[29]谭雪莲,郭天文,刘高远. 马铃薯连作土壤微生物特性与土传病原菌的相互关系[J]. 灌溉排水学报,2016,35(8):30-35.
[30]杜洋洋,包媛媛,刘项宇,等. 荞麦轮作对云南栽培马铃薯根际土壤酶活和微生物的影响[J]. 中国农业科技导报, 2024,26(5):192-200.
[31]肖新,朱伟,杜超,等. 轮作与施肥对滁菊连作土壤微生物特性的影响[J]. 应用生态学报,2015,26(6):1779-1784.
[32]马学兰,周连玉,孙文娟,等. 青海不同区域农田作物土壤细菌多样性及群落结构分析[J]. 微生物学报,2024,64(4):1142-1161.
[33]FIERER N, LAUBER C L, RAMIREZ K S, et al. Comparative metagenomic,phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients[J]. The ISME Journal,2012,6(5):1007-1017.
[34]SHEN Z Z, ZHONG S T, WANG Y G, et al. Induced soil microbial suppression of banana Fusarium wilt disease using compost and biofertilizers to improve yield and quality[J]. European Journal of Soil Biology,2013,57:1-8.
[35]LIU X, ZHANG J L, GU T Y, et al. Microbial community diversities and taxa abundances in soils along a seven-year gradient of potato monoculture using high throughput pyrosequencing approach[J]. PLoS One,2014,9(1):e86610.
[36]纳小凡,郑国旗,邢正操,等. 连作对再植枸杞根际细菌群落多样性和群落结构的影响[J]. 土壤学报,2017,54(5):1280-1292.
[37] BARANIECKI C A, AISLABIE J, FOGHT J M. Characterization of Sphingomonas sp.Ant 17,an aromatic hydrocarbon-degrading bacterium isolated from Antarctic soil[J]. Microbial Ecology,2002,43(1):44-54.
[38]王娜,武坤毅,崔浪军,等. 溶杆菌属细菌鉴定及生防机制概况[J]. 西北农林科技大学学报(自然科学版),2015,43(5):174-182,191.
[39]孙建平,刘雅辉,左永梅,等. 盐地碱蓬根际土壤细菌群落结构及其功能[J]. 中国生态农业学报(中英文),2020,28(10):1618-1629.
[40]张拓,徐飞,怀宝东,等. 松花江下游沿江湿地土地利用变化对土壤细菌群落多样性的影响[J]. 环境科学,2020,41(9):4273-4283.
[41]XIA Q, LIU X L, GAO Z Q, et al. Responses of rhizosphere soil bacteria to 2-year tillage rotation treatments during fallow period in semiarid southeastern Loess Plateau[J]. Peer J,2020,8:e8853.
[42]杜宇佳,高广磊,陈丽华,等. 呼伦贝尔沙区土壤细菌群落结构与功能预测[J]. 中国环境科学,2019,39(11):4840-4848.
[43]刘平静,肖杰,孙本华,等. 长期不同施肥措施下土细菌群落结构变化及其主要影响因素[J]. 植物营养与肥料学报,2020,26(2):307-315.