参考文献/References:
[1]NAIR R M, YANG R Y, EASDOWN W J, et al. Biofortification of mungbean (Vigna radiata) as a whole food to enhance human health[J]. Journal of the Science of Food and Agriculture,2013,93(8):1805-1813.
[2]程须珍,王素华,王丽侠. 绿豆种质资源描述规范和数据标准[M]. 北京:中国农业出版社,2006.
[3]吴木兰. 明绿豆营养特性与产地溯源研究及其高蛋白绿豆脆饼开发[D]. 南昌:南昌大学,2023.
[4]贺微仙,王文真. 中国绿豆种质资源的营养品质鉴定初步研究[J]. 作物学报,1987,13(4):346-348.
[5]黄梦迪. 不同品种绿豆及其豆芽品质研究与评价[D]. 西安:西北农林科技大学,2021.
[6]EBERT A W, CHANG C H, YAN M R, et al. Nutritional composition of mungbean and soybean sprouts compared to their adult growth stage[J]. Food Chemistry,2017,237:15-22.
[7]GANESAN K, XU B J. A critical review on phytochemical profile and health promoting effects of mung bean (Vigna radiata)[J]. Food Science and Human Wellness,2018,7(1):11-33.
[8]HE C X, WANG K, XIA J, et al. Natural exosomes-like nanoparticles in mung bean sprouts possesses anti-diabetic effects via activation of PI3K/Akt/GLUT4/GSK-3β signaling pathway[J]. Journal of Nanobiotechnology,2023,21(1):349.
[9]TANG D Y, DONG Y M, GUO N, et al. Metabolomic analysis of the polyphenols in germinating mung beans (Vigna radiata) seeds and sprouts[J]. Journal of the Science of Food and Agriculture,2014,94(8):1639-1647.
[10]ALI-REZA A S M, NASRIN M S, HOSSEN M A, et al. Mechanistic insight into immunomodulatory effects of food-functioned plant secondary metabolites[J]. Critical Reviews in Food Science and Nutrition,2023,63(22):5546-5576.
[11]XUE Z H, WANG C, ZHAI L J, et al. Bioactive compounds and antioxidant activity of mung bean (Vigna radiata L.),soybean (Glycine max L.) and black bean (Phaseolus vulgaris L.) during the germination process[J]. Czech Journal of Food Sciences,2016,34(1):68-78.
[12]SEHRAWAT N, YADAV M, KUMAR S, et al. Mung bean as a potent emerging functional food having anticancer therapeutic potential:mechanistic insight and recent updates[J]. Biotechnology and Applied Biochemistry,2023,70(6):2002-2016.
[13]GAN R Y, LUI W Y, WU K, et al. Bioactive compounds and bioactivities of germinated edible seeds and sprouts:An updated review[J]. Trends in Food Science & Technology,2017,59:1-14.
[14]RINSCHEN M M, IVANISEVIC J, GIERA M, et al. Identification of bioactive metabolites using activity metabolomics[J]. Nature Reviews Molecular Cell Biology,2019,20:353-367.
[15]MUTHUBHARATHI B C, GOWRIPRIYA T, BALAMURUGAN K. Metabolomics:small molecules that matter more [J]. Molecular Omics,2021,17(2):210-229.
[16]COLLINO S, MARTIN F P J, KOCHHAR S, et al. Nutritional metabonomics:an approach to promote personalized health a nd wellness[J]. CHIMIA International Journal for Chemistry,2011,65(6):396-399.
[17]方贤胜,吴涛,肖良俊. 基于广泛靶向代谢组学的浅黄色和紫色核桃内种皮成分差异分析[J]. 食品科学,2021,42(12):215-221.
[18]KIM B C, LIM I, HA J. Metabolic profiling and expression analysis of key genetic factors in the biosynthetic pathways of antioxidant metabolites in mungbean sprouts[J]. Frontiers in Plant Science,2023,14:1207940.
[19]DUNN W B, BROADHURST D, BEGLEY P, et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry[J]. Nature Protocols,2011,6(7):1060-1083.
[20]唐佳代,冉光耀,陈诺,等. 基于非靶向代谢组学分析不同陈化时间老鹰茶代谢产物的差异[J]. 中国酿造,2023,42(9):115-119.
[21]李亚娇,马培杰,龙忠富,等. 低磷与干旱胁迫下百脉根代谢组学分析[J]. 草地学报,2022,30(2):329-338.
[22]刘振,成杨,赵洋,等. 基于代谢组学的湖南典型地方茶树种质资源代谢物差异研究[J]. 核农学报,2022,36(1):83-93.
[23]张丽媛,于英博,赵子莹,等. 不同品种绿豆中代谢产物的分离鉴定及代谢机制分析[J]. 食品科学,2021,42(16):169-175.
[24]NA-JOM K, FRANK T, ENGEL K H. A metabolite profiling approach to follow the sprouting process of mung beans (Vigna radiata)[J]. Metabolomics,2011,7(1):102-117.
[25]LIANG Y D, DAI X L, CAO Y, et al. The neuroprotective and antidiabetic effects of trigonelline:a review of signaling pathways and molecular mechanisms[J]. Biochimie,2023,206:93-104.
[26]CHOI M, MUKHERJEE S, YUN J W. Trigonelline induces browning in 3T3-L1 white adipocytes[J]. Phytotherapy Research,2021,35(2):1113-1124.
[27]QIU Z G, WANG K F, JIANG C, et al. Trigonelline protects hippocampal neurons from oxygen-glucose deprivation-induced injury through activating the PI3K/Akt pathway[J]. Chemico-Biological Interactions,2020,317:108946.
[28]FAIZAN M, JAHAN I, ISHAQ M, et al. Neuroprotective effects of trigonelline in kainic acid-induced epilepsy:behavioral,biochemical,and functional insights[J]. Saudi Pharmaceutical Journal,2023,31(12):101843.
[29]GONG M M, GUO Y J, DONG H, et al. Trigonelline inhibits tubular epithelial-mesenchymal transformation in diabetic kidney disease via targeting Smad7[J]. Biomedicine & Pharmacotherapy,2023,168:115747.
[30]么杨. 绿豆降血糖活性研究[D]. 北京:中国农业科学院,2009.
[31]YANG Q Q, GE Y Y, GUNARATNE A, et al. Phenolic profiles,antioxidant activities,and antiproliferative activities of different mung bean (Vigna radiata) varieties from Sri Lanka[J]. Food Bioscience,2020,37:100705.
[32]KARTIKEYAN A, VASUDEVAN V, PETER A J, et al. Effect of incubation period on the glycosylated protein content in germinated and ungerminated seeds of mung bean [Vigna radiata (L.) Wilczek][J]. International Journal of Biological Macromolecules,2022,217:633-651.
[33]SEHRAWAT N, YADAV M, KUMAR S, et al. Review on health promoting biological activities of mungbean:a potent functional food of medicinal importance[J]. Plant Archives,2020,20:2969-2975.
[34]YANG J, XIE D M, MA X F. Recent advances in chemical synthesis of amino sugars[J]. Molecules,2023,28(12):4724.
[35]TANG D Y, DONG Y M, REN H K, et al. A review of phytochemistry,metabolite changes,and medicinal uses of the common food mung bean and its sprouts (Vigna radiata)[J]. Chemistry Central Journal,2014,8(1):4.
[36]PEACOCK M. Phosphate metabolism in health and disease[J]. Calcified Tissue International,2021,108(1):3-15.
[37]WANG K X, YUAN Y H, LUO X Y, et al. Effects of exogenous selenium application on nutritional quality and metabolomic characteristics of mung bean (Vigna radiata L.)[J]. Frontiers in Plant Science,2022,13:961447.