参考文献/References:
[1]李杨,董春旺,陈建能,等. 茶叶智能采摘技术研究进展与展望[J]. 中国茶叶,2022,44(7):1-9.
[2]金寿祥,周宏平,姜洪喆,等. 采摘机器人视觉系统研究进展[J]. 江苏农业学报,2023,39(2):582-595.
[3]裴伟,王晓林. 基于图像信息的茶叶二维采摘坐标的提取[J]. 浙江农业学报,2016,28(3):522-527.
[4]邵佩迪,吴明晖,季亚波,等. 茶叶嫩芽机器视觉识别算法研究[J]. 农业装备与车辆工程,2020,58(4):34-36,45.
[5]张博. 基于RGB-D的茶叶识别与定位技术研究[D]. 沈阳:沈阳工业大学,2020.
[6]罗坤,吴正敏,曹成茂,等. 茶鲜叶嫩梢捏切组合式采摘器设计与试验[J]. 农业工程学报,2022,38(13):1-9.
[7]龙樟,姜倩,王健,等. 茶叶嫩芽视觉识别与采摘点定位方法研究[J]. 传感器与微系统,2022,41(2):39-41,45.
[8]李翰林,高延峰,熊根良,等. 基于实例分割的大场景下茶叶嫩芽轮廓提取与采摘点定位[J]. 农业工程学报,2024,40(15):135-142.
[9]吕军,方梦瑞,姚青,等. 基于区域亮度自适应校正的茶 叶嫩芽检测模型[J]. 农业工程学报,2021,37(22):278-285.
[10]杨大勇,黄正栎,郑昌贤,等. 基于改进YOLOv8n的茶叶嫩稍检测方法[J]. 农业工程学报,2024,40(12):165-173,313.
[11]SHUAI L Y, MU J, JIANG X Q, et al. An improved YOLOv5-based method for multi-species tea shoot detection and picking point location in complex backgrounds[J]. Biosystems Engineering,2023(231):117-132.
[12]WANG T, ZHANG K M, ZHANG W, et al. Tea picking point detection and location based on Mask-RCNN[J]. Information Processing in Agriculture,2023,10(2):267-275.
[13]YAN L J, WU K H, LIN J, et al. Identification and picking point positioning of tender tea shoots based on MR3P-TS model[J]. Frontiers in Plant Science,2022(13):962391.
[14]XU F, LI B, XU S. Accurate and rapid localization of tea bud leaf picking point based on YOLOv8[C]//MENG X F, CHEN Y, SUO L M, et al. 2023 China National Conference on Big Data and Social Computing. Urumqi, China:Springer,2023:261-274.
[15]高洋. 基于深度学习的茶叶采摘点定位[D]. 合肥:安徽农业大学,2023.
[16]RUSSELL B C, TORRALBA A, MURPHY K P. LabelMe:a database and web-based tool for image annotation[J]. International Journal of Computer Vision,2008,77(1):157-173.
[17]WANG Y, LI B, YUAN X L. BrightFormer:a transformer to brighten the image[J]. Computers & Graphics,2023(110):49-57.
[18]XIAO T, XIA T, YANG Y, et al. Learning from massive noisy labeled data for image classification[C]//HORST B, DAVID F, CORDELIA S, et al. 2015 IEEE conference on computer vision and pattern recognition. Boston,MA,USA:IEEE,2015:2691-2699.
[19]ZHONG Z, ZHENG L, KANG G L, et al. Random erasing data augmentation[J]. Proceedings of the AAAI Conference on Artificial Intelligence,2020,34(7):13001-13008.
[20]YUE X, QI K, NA X Y, et al. Improved YOLOv8-seg network for instance segmentation of healthy and diseased tomato plants in the growth stage[J]. Agriculture,2023,13(8):1643.
[21] LI H W, HUANG J Z, GU Z N, et al. Positioning of mango picking point using an improved YOLOv8 architecture with object detection and instance segmentation[J]. Biosystems Engineering,2024(247):202-220.
[22]GE Z, LIU S T, WANG F, et al. YOLOX:exceeding YOLO series in 2021[EB/OL]. (2021-07-18)
[2024-08-20]. https://doi.org/10.48550/arXiv.2107.08430.
[23]CHEN H T, WANG Y H, GUO J Y, et al. VanillaNet:the power of minimalism in deep learning[EB/OL]. (2023-05-23)
[2024-08-20]. https://doi.org/10.48550/arXiv.2305.12972.
[24]LAU K W, PO L M, REHMAN Y A. Large separable kernel attention:rethinking the large kernel attention design in CNN[J]. Expert Systems with Applications,2024(236):121352.
[25]ZHENG Z H, WANG P, REN D W, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics,2022,52(8):8574-8586.
[26]ZHANG H, ZHANG S J. Shape-IoU:more accurate metric considering bounding box shape and scale[EB/OL]. (2023-12-29)
[2024-08-20]. https://doi.org/10.48550/arXiv.2312.17663.
[27] LU J B, YU M M, LIU J Y. Lightweight strip steel defect detection algorithm based on improved YOLOv7[J]. Scientific Reports,2024,14(1):13267.
[28]SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2:inverted residuals and linear bottlenecks[C]//BROWN M S, MORSE B, PELEG S, et al. 2018 IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City,USA:IEEE,2018:4510-4520.
[29] PAOLETTI M E, HAUT J M, PEREIRA N S, et al. GhostNet for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing,2021,59(12):10378-10393.
[30]MA N, ZHANG X, ZHENG H T, et al. ShuffleNetV2:practical guidelines for efficient CNN architecture design[C]//LIN T Y, PATTERSON G, RONCHI M R, et al. 2018 European Conference on Computer Vision. Munich,Germany:Springer,2018:116-131.
[31]WANG D D, HE D J. Fusion of mask R-CNN and attention mechanism for instance segmentation of apples under complex background[J]. Computers and Electronics in Agriculture,2022,196:106864.
[32]WANG M J, LI Y, MENG H W, et al. Small target tea bud detection based on improved YOLOv5 in complex background[J]. Frontiers in Plant Science,2024,15:1393138.
[33]WANG C Y, BOCHKOVSKIY A, LIAO H Y. YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//BROWN M S, LI F F, MORI G, et al. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver,BC,Canada:IEEE,2023:7464-7475.
[34]YE R, SHAO G Q, GAO Q, et al. CR-YOLOv9:improved YOLOv9 multi-stage strawberry fruit maturity detection application integrated with CRNET[J]. Foods,2024,13(16):2571.
相似文献/References:
[1]孙云云,江朝晖,董伟,等.基于卷积神经网络和小样本的茶树病害图像识别[J].江苏农业学报,2019,(01):48.[doi:doi:10.3969/j.issn.1000-4440.2019.01.007]
SUN Yun-yun,JIANG Zhao-hui,DONG Wei,et al.Image recognition of tea plant disease based on convolutional neural network and small samples[J].,2019,(01):48.[doi:doi:10.3969/j.issn.1000-4440.2019.01.007]
[2]邱洪涛,孙裴,侯金波,等.基于Caffe的猪肉新鲜度分级的设计与实现[J].江苏农业学报,2019,(02):461.[doi:doi:10.3969/j.issn.1000-4440.2019.02.029]
QIU Hong-tao,SUN Pei,HOU Jin-bo,et al.Design and implementation of pork freshness grading based on Caffe[J].,2019,(01):461.[doi:doi:10.3969/j.issn.1000-4440.2019.02.029]
[3]牛学德,高丙朋,南新元,等.基于改进DenseNet卷积神经网络的番茄叶片病害检测[J].江苏农业学报,2022,38(01):129.[doi:doi:10.3969/j.issn.1000-4440.2022.01.015]
NIU Xue-de,GAO Bing-peng,NAN Xin-yuan,et al.Detection of tomato leaf disease based on improved DenseNet convolutional neural network[J].,2022,38(01):129.[doi:doi:10.3969/j.issn.1000-4440.2022.01.015]
[4]梁凯博,孙立,汪禹治,等.基于超轻量化卷积神经网络的番茄病虫害诊断[J].江苏农业学报,2024,(03):438.[doi:doi:10.3969/j.issn.1000-4440.2024.03.006]
LIANG Kai-bo,SUN Li,WANG Yu-zhi,et al.Diagnosis of tomato pests and diseases based on super lightweight convolutional neural network[J].,2024,(01):438.[doi:doi:10.3969/j.issn.1000-4440.2024.03.006]
[5]蒋东山,刘金洋,张浩淼,等.基于CNN和Transformer的绿豆干旱胁迫识别模型[J].江苏农业学报,2025,(01):87.[doi:doi:10.3969/j.issn.1000-4440.2025.01.011]
JIANG Dongshan,LIU Jinyang,ZHANG Haomiao,et al.Drought stress recognition model of mung bean based on CNN and Transformer[J].,2025,(01):87.[doi:doi:10.3969/j.issn.1000-4440.2025.01.011]