参考文献/References:
[1]PALMA L, MUOZ D, BERRY C, et al. Bacillus thuringiensis toxins:an overview of their biocidal activity[J]. Toxins,2014,6(12):3296-3325.
[2]徐重新,金嘉凤,孙晓明,等. 基于Bt毒素的杀虫蛋白理性设计与创新应用策略[J]. 中国农业科学,2024,57 (1):96-125.
[3]耿丽丽,陶岭梅,张宏军,等. 苏云金芽孢杆菌安全性的研究进展[J]. 中国生物防治学报,2021,37(1):2-10.
[4]ISAAA. Global status of commercialized biotech/GM crops in 2019:biotech crops drive socio-economic development and sustainable environment in the new frontier[R/OL]. Ithaca:ISAAA,2020. https://www.isaaa.org/resources/publications/briefs/55/default.asp.
[5]JURAT-FUENTES J L, HECKEL D G, FERR J. Mechanisms of resistance to insecticidal proteins from Bacillus thuringiensis[J]. Annual Review of Entomology,2021,66:121-140.
[6]JIAO Y, YANG Y, MEISSLE M, et al. Comparison of susceptibility of Chilo suppressalis and Bombyx mori to five Bacillus thuringiensis proteins[J]. Journal of Invertebrate Pathology,2016,136:95-99.
[7]KOCH M S, WARD J M, LEVINE S L, et al. The food and environmental safety of Bt crops[J]. Frontiers in Plant Science,2015,6:283.
[8]FAHEEM A, QIN Y, NAN W, et al. Advances in the immunoassays for detection of Bacillus thuringiensis crystalline toxins[J]. Journal of Agricultural and Food Chemistry, 2021,69:10407-10418.
[9]PENG Q, YU Q, SONG F. Expression of cry genes in Bacillus thuringiensis biotechnology[J]. Applied Microbiology and Biotechnology,2019,103:1617-1626.
[10]DENG C, PENG Q, SONG F, et al. Regulation of cry gene expression in Bacillus thuringiensis[J]. Toxins,2014,6:2194-2209.
[11]ROSANO G L, CECCARELLI E A. Recombinant protein expression in Escherichia coli:advances and challenges[J]. Frontiers in Microbiology,2014,5:172.
[12]BUKHARI D A, SHAKOORI A R. Cloning and expression of Bacillus thuringiensis cry11 crystal protein gene in Escherichia coli[J]. Molecular Biology Reports,2009,36:1661-1670.
[13]GURKAN C, ELLAR D. Expression of the Bacillus thuringiensis Cyt2Aa I toxin in Pichia pastoris using a synthetic gene construct[J]. Biotechnology and Applied Biochemistry,2003,38:25-33.
[14]DENG S Q, ZOU W H, LI D L, et al. Expression of Bacillus thuringiensis toxin Cyt2Ba in the entomopathogenic fungus Beauveria bassiana increases its virulence towards Aedes mosquitoes[J]. PLoS Neglected Tropical Diseases,2019,13:e0007590.
[15]TOUNSI S, AOUN A E, BLIGHT M, et al. Evidence of oral toxicity of Photorhabdus temperata strain K122 against Prays oleae and its improvement by heterologous expression of Bacillus thuringiensis cry1Aa and cry1Ia genes[J]. Journal of Invertebrate Pathology,2006,91:131-135.
[16]HERNNDEZ-RODRGUEZ C S, RUIZ DE ESCUDERO I, ASENSIO A, et al. Encapsulation of the Bacillus thuringiensis secretable toxins Vip3Aa and Cry1Ia in Pseudomonas fluorescens[J]. Biological Control, 2013,66:159-165.
[17]DURMAZ E, HU Y, AROIAN R V, et al. Intracellular and extracellular expression of Bacillus thuringiensis crystal protein Cry5B in Lactococcus lactis for use as an anthelminthic[J]. Applied and Environmental Microbiology, 2016, 82:1286-1294.
[18]QIN Y, YING S H, CHEN Y, et al. Integration of insecticidal protein Vip3Aa1 into Beauveria bassiana enhances fungal virulence to Spodoptera litura larvae by cuticle and per Os infection[J]. Applied and Environmental Microbiology,2010,76:4611-4618.
[19]PACHECO S, CANTON E, ZUNIGA-NAVARRETE F, et al. Improvement and efficient display of Bacillus thuringiensis toxins on M13 phages and ribosomes[J]. AMB Express,2015,5:73.
[20]RUBIO-INFANTE N, MORENO-FIERROS L. An overview of the safety and biological effects of Bacillus thuringiensis Cry toxins in mammals[J]. Journal of Applied Toxicology,2016,36:630-648.
[21]YANG Y Y, MEI F, ZHANG W, et al. Creation of Bt rice expressing a fusion protein of Cry1Ac and Cry1I-like using a green tissue-specific promoter[J]. Journal of Economic Entomology,2014,107:1674-1679.
[22]DU D, GENG C, ZHANG X, et al. Transgenic maize lines expressing a cry1C* gene are resistant to insect pests[J]. Plant Molecular Biology Reporter,2014,32:549-557.
[23]CHAKRABARTI S K, LUTZ K A, LERTWIRIYAWONG B, et al. Expression of the cry9Aa2 B.t. gene in tobacco chloroplasts confers resistance to potato tuber moth[J]. Transgenic Research,2006,15:481-488.
[24]WANG Y, ZHANG L, LI Y, et al. Expression of Cry1Ab protein in a marker-free transgenic Bt rice line and its efficacy in controlling a target pest, Chilo suppressalis (Lepidoptera:Crambidae)[J]. Environmental Entomology,2014,43:528-536.
[25]CHEN H, HUANG Y, YE M, et al. Achieving high expression of cry in green tissues and negligible expression in endosperm simultaneously via rbcS gene fusion strategy in rice[J]. International Journal of Molecular Sciences,2023,24(10):9045.
[26]XU C, CHENG J, LIN H, et al. Characterization of transgenic rice expressing fusion protein Cry1Ab/Vip3A for insect resistance[J]. Scientific Reports,2018,8:15788.
[27]YE R, HUANG H, YANG Z, et al. Development of insect-resistant transgenic rice with Cry1C* free endosperm[J]. Pest Management Science,2009,65:1015-1020.
[28]CHEN H, TANG W, XU C G, et al. Genetics, transgenic indica rice plants harboring a synthetic cry2A* gene of Bacillus thuringiensis exhibit enhanced resistance against lepidopteran rice pests[J]. Theoretical and Applied Genetics,2005,111:1330-1337.
[29]CHAKRABORTY M, REDDY P S, MUSTAFA G, et al. Transgenic rice expressing the cry2AX1 gene confers resistance to multiple lepidopteran pests[J]. Transgenic Research,2016,25:665-678.
[30]LIANG J G, ZHANG D D, LI D Y, et al. Expression profiles of Cry1Ab protein and its insecticidal efficacy against the invasive fall armyworm for Chinese domestic GM maize DBN9936[J]. Journal of Integrative Agriculture,2021,20:792-803.
[31]CHEN H X, YANG R, YANG W, et al. Efficacy of Bt maize producing the Cry1Ac protein against two important pests of corn in China[J]. Environmental Science and Pollution Research,2016,23:21511-21516.
[32]LI X Y, LANG Z H, ZHANG J, et al. Acquisition of insect-resistant transgenic maize harboring a truncated cry1Ah gene via agrobacterium-mediated transformation[J]. Journal of Integrative Agriculture,2014,13:937-944.
[33]CHEN S, WANG W, KANG G, et al. Toxic effects of Bt-(Cry1Ab+Vip3Aa) maize on storage pest Paralipsa gularis (Zeller)[J]. Toxins,2024,16(2):92.
[34]NGUYEN H T, JEHLE J A. Expression of Cry3Bb1 in transgenic corn MON88017[J]. Journal of Agricultural and Food Chemistry,2009,57:9990-9996.
[35]MEIYALAGHAN S, JACOBS J M E, BUTLER R C, et al. Transgenic potato lines expressing cry1Ba1 or cry1Ca5 genes are resistant to potato tuber moth[J]. Potato Research,2006,49:203-216.
[36]YU H, LI Y, LI X, et al. Expression of Cry1Ac in transgenic Bt soybean lines and their efficiency in controlling lepidopteran pests[J]. Pest Management Science,2013,69:1326-1333.
[37]QIN D, LIU X Y, MICELI C, et al. Soybean plants expressing the Bacillus thuringiensis cry8-like gene show resistance to Holotrichia parallela[J]. BMC Biotechnology,2019,19:66.
[38]KHATODIA S. Molecular characterization of Bt chickpea (Cicer arietinum L.) plants carrying cry1Aa3 gene[J]. International Journal of Current Microbiology and Applied Sciences,2014,3:632-642.
[39]KHATODIA S, KHARB P, BATRA P, et al. Development and characterization of transgenic chickpea (Cicer arietinum L.) plants with cry1Ac gene using tissue culture independent protocol[J]. International Journal of Advanced Research,2014,2:323-331.
[40]MEHROTRA M, SINGH A K, SANYAL I, et al. Pyramiding of modified cry1Ab and cry1Ac genes of Bacillus thuringiensis in transgenic chickpea (Cicer arietinum L.) for improved resistance to pod borer insect Helicoverpa armigera[J]. Euphytica,2011,182:87-102.
[41]DAS A, DATTA S, SUJAYANAND G K, et al. Expression of chimeric Bt gene, Cry1Aabc in transgenic pigeonpea (cv. Asha) confers resistance to gram pod borer (Helicoverpa armigera Hubner.)[J]. Plant Cell, Tissue and Organ Culture,2016,127:705-715.
[42]SINGH S, KUMAR N R, MANIRAJ R, et al. Expression of Cry2Aa, a Bacillus thuringiensis insecticidal protein in transgenic pigeon pea confers resistance to gram pod borer, Helicoverpa armigera[J]. Scientific Reports,2018,8:8820.
[43]BETT B, GOLLASCH S, MOORE A, et al. Transgenic cowpeas (Vigna unguiculata L. Walp) expressing Bacillus thuringiensis Vip3Ba protein are protected against the Maruca pod borer (Maruca vitrata)[J]. Plant Cell,Tissue and Organ Culture,2017,131:335-345.
[44]KIM Y, KANG J, KIM J, et al. Effects of Bt transgenic Chinese cabbage on the herbivore Mamestra brassicae (Lepidoptera:Noctuidae) and its parasitoid Microplitis mediator (Hymenoptera:Braconidae)[J]. Journal of Economic Entomology,2008,101:1134-1139.
[45]WANG Y, ZHANG Y, WANG F, et al. Development of transgenic Brassica napus with an optimized cry1C* gene for resistance to diamondback moth (Plutella xylostella)[J]. Canadian Journal of Plant Science,2014,94:1501-1506.
[46]KESHAVAREDDY G, ROHINI S, RAMU S V, et al. Transgenics in groundnut (Arachis hypogaea L.) expressing cry1AcF gene for resistance to Spodoptera litura (F.)[J]. Physiology and Molecular Biology of Plants,2013,19:343-352.
[47]TORRES J B, RUBERSON J R, ADANG M J. Expression of Bacillus thuringiensis Cry1Ac protein in cotton plants, acquisition by pests and predators:a tritrophic analysis[J]. Agricultural and Forest Entomology,2006,8:191-202.
[48]SIEBERT M, PATTERSON T G, GILLES G J, et al. Quantification of Cry1Ac and Cry1F Bacillus thuringiensis insecticidal proteins in selected transgenic cotton plant tissue types[J]. Journal of Economic Entomology,2009,102:1301-1308.
[49]WANG Q, ZHU Y, SUN L, et al. Transgenic Bt cotton driven by the green tissue-specific promoter shows strong toxicity to lepidopteran pests and lower Bt toxin accumulation in seeds[J]. Science China-life Sciences,2016,59:172-182.
[50]RIBEIRO T P, ARRAES F B M, LOURENCO-TESSUTTI I T, et al. Transgenic cotton expressing Cry10Aa toxin confers high resistance to the cotton boll weevil[J]. Plant Biotechnology Journal,2017,15:997-1009.
[51]LI S, WANG Z, ZHOU Y, et al. Expression of cry2Ah1 and two domain II mutants in transgenic tobacco confers high resistance to susceptible and Cry1Ac-resistant cotton bollworm[J]. Scientific Reports,2018,8:508.
[52]LUCIANI G, ALTPETER F, CHANG J, et al. Expression of cry1Fa in Bahiagrass enhances resistance to fall armyworm[J]. Crop Science,2007,47:2430-2436.
[53]MUDDANURU T, POLUMETLA A K, MADDUKURI L,et al. Development and evaluation of transgenic castor (Ricinus communis L.) expressing the insecticidal protein Cry1Aa of Bacillus thuringiensis against lepidopteran insect pests[J]. Crop Protection,2019,119:113-125.
[54]MAJUMDER S, DATTA K, SATPATHY S, et al. Development and evaluation of lepidopteran insect resistant jute expressing the fused Bt-Cry1Ab/Ac toxin driven by CaMV35S promoter[J]. Industrial Crops and Products,2020,156:112873.
[55]SINGH A K, DUBEY S K. Current trends in Bt crops and their fate on associated microbial community dynamics:a review[J]. Protoplasma,2016,253:663-681.
[56]LIU J, LIANG Y S, HU T, et al. Environmental fate of Bt proteins in soil:transport, adsorption/desorption and degradation[J]. Ecotoxicology and Environmental Safety, 2021, 226:112805.
[57]ZHANG L, SHEN W, FANG Z, et al. Effects of genetically modified maize expressing Cry1Ab and EPSPS proteins on Japanese quail[J]. Poultry Science,2021,100:1068-1075.
[58]GAO Y J, ZHU H J, CHEN Y, et al. Safety assessment of Bacillus thuringiensis insecticidal proteins Cry1C and Cry2A with a Zebrafish embryotoxicity test[J]. Journal of Agricultural and Food Chemistry,2018,66:4336-4344.
[59]DAI P L, JIA H R, GENG L L, et al. Bt toxin Cry1Ie causes no negative effects on survival, pollen consumption, or olfactory learning in worker Honey Bees (Hymenoptera:Apidae)[J]. Journal of Economic Entomology,2016,109:1028-1033.
[60]WU F, JIANG Z, WANG B, et al. Biochemical analyses demonstrate that Bt maize has no adverse effects on Eisenia fetida[J]. PLoS One,2022,17:e0269303.
[61]LI Y, MEISSLE M, ROMEIS J. Consumption of Bt maize pollen expressing Cry1Ab or Cry3Bb1 does not harm adult green Lacewings, Chrysoperla carnea (Neuroptera:Chrysopidae)[J]. PLoS One,2008,3:e2909.
[62]SHU Y, ZHANG Y, ZENG H, et al. Effects of Cry1Ab Bt maize straw return on bacterial community of earthworm Eisenia fetida[J]. Chemosphere,2017,173:1-13.
[63]LIU X, ZHANG Q, ZHAO J Z, et al. Effects of the Cry1Ac toxin of Bacillus thuringiensis on Microplitis mediator, a parasitoid of the cotton bollworm, Helicoverpa armigera[J]. Entomologia Experimentalis et Applicata,2005,114(3):205-213.
[64]ROLIM G D S, PLATA-RUEDA A, MARTINEZ L C, et al. Side effects of Bacillus thuringiensis on the parasitoid Palmistichus elaeisis (Hymenoptera:Eulophidae)[J]. Ecotoxicology and Environmental Safety,2020,189:109978.
[65]AMICHOT M, CURTY C, GALLET A, et al. Side effects of Bacillus thuringiensis var. kurstaki on the hymenopterous parasitic wasp Trichogramma chilonis[J]. Environmental Science and Pollution Research,2016,23:3097-3103.
[66]徐重新,刘媛,李建宏,等. 基因工程抗体在微囊藻毒素检测分析上的应用研究[J]. 分析测试学报,2019,38(3):372-378.
[67]YE R, CHEN H, LI H. One-pot synthesis of HRP&SA/ZIF-8 nanocomposite and its application in the detection of insecticidal crystalline protein Cry1Ab[J]. Nanomaterials,2022,12:2679.
[68]KANAGASUBBULAKSHMI S, KADIRVELU K. Paper-based simplified visual detection of Cry2Ab insecticide from transgenic cottonseed samples using integrated quantum dots-IgY antibodies[J]. Journal of Agricultural and Food Chemistry,2021,69:4074-4080.
[69]CHEN C X, WU J. A fast and sensitive quantitative lateral flow immunoassay for Cry1Ab based on a novel signal amplification conjugate[J]. Sensors,2012,12(9):11684-11696.
[70]LIANG J, WU Y, LIU C, et al. Preparation of high stable core/shell magnetic nanoparticles and application in Bacillus thuringiensis Cry1Ac proteins detection[J]. Sensors and Actuators B:Chemical,2017, 241:758-764.
[71]WALSCHUS U W E, WITT S, WITTMANN C. Development of monoclonal antibodies against Cry1Ab protein from Bacillus thuringiensis and their application in an ELISA for detection of transgenic Bt-maize[J]. Food and Agricultural Immunology,2010,14:231-240.
[72]DONG S, ZHANG X, LIU Y, et al. Establishment of a sandwich enzyme-linked immunosorbent assay for specific detection of Bacillus thuringiensis (Bt) Cry1Ab toxin utilizing a monoclonal antibody produced with a novel hapten designed with molecular model[J]. Analytical and Bioanalytical Chemistry,2017,409:1985-1994.
[73]PAUL V, STEINKE K, MEYER H H. Development and validation of a sensitive enzyme immunoassay for surveillance of Cry1Ab toxin in bovine blood plasma of cows fed Bt-maize (MON810)[J]. Analytica Chimica Acta,2008,607(1):106-113.
[74]ZHANG X, XU C X, ZHANG C, et al. Established a new double antibodies sandwich enzyme-linked immunosorbent assay for detecting Bacillus thuringiensis (Bt) Cry1Ab toxin based single-chain variable fragments from a naive mouse phage displayed library[J]. Toxicon,2014,81:13-22.
[75]WANG S, GUO A Y, ZHENG W J, et al. Development of ELISA for the determination of transgenic Bt-cottons using antibodies against Cry1Ac protein from Bacillus thuringiensis HD-73[J]. Engineering in Life Sciences,2007,7:149-154.
[76]LI M, ZHU M, ZHANG C Z, et al. Uniform orientation of biotinylated nanobody as an affinity binder for detection of Bacillus thuringiensis (Bt) Cry1Ac toxin[J]. Toxins,2014,6(12):3208-3222.
[77]ZHONG W J, LI G H, YU X L, et al. Sensitive detection of Bacillus thuringiensis Cry1B toxin based on camel single-domain antibodies[J]. Microbiologyopen,2018,7(4):e00581.
[78]ZHANG Y W, ZHANG W, LIU Y, et al. Development of monoclonal antibody-based sensitive ELISA for the determination of Cry1Ie protein in transgenic plant[J]. Analytical and Bioanalytical Chemistry,2016,408(28):8231-8239.
[79]SHEN C, HAO J, LI Y H, et al. Establishment of monoclonal antibody and scFv immuno-based assay for Cry2Aa toxin in spiked grain samples[J]. Analytical Biochemistry,2023,677:115270.
[80]LIU W X, LIU X R, LIU C, et al. Development of a sensitive monoclonal antibody-based sandwich ELISA to detect Vip3Aa in genetically modified crops[J]. Biotechnology Letters,2020,42(8):1467-1478.
[81]DONG S, GAO M, GUAN L, et al. Construction, expression, and identification of double light chain (VL-VL) antibody from a unique Bt Cry1-specific monoclonal antibody[J]. Food Analytical Methods,2020,13:1570-1582.
[82]DONG S, ZHANG C, LIU Y, et al. Simultaneous production of monoclonal antibodies against Bacillus thuringiensis (Bt) Cry1 toxins using a mixture immunization[J]. Analytical Biochemistry,2017,531:60-66.
[83]DONG S, BO Z, ZHANG C, et al. Screening for single-chain variable fragment antibodies against multiple Cry1 toxins from an immunized mouse phage display antibody library[J]. Applied Microbiology and Biotechnology,2018,102:3363-3374.
[84]SHEN C, MENG M, JIN J, et al. Establishment of novel receptor-antibody sandwich assays to broadly detect Bacillus thuringiensis Cry1 and Cry2 toxins[J]. International Journal of Biological Macromolecules,2024,254:128034.
[85]ZHANG X, LIU Y, ZHANG C, et al. Rapid isolation of single-chain antibodies from a human synthetic phage display library for detection of Bacillus thuringiensis (Bt) Cry1B toxin[J]. Ecotoxicology and Environmental Safety,2012,81:84-90.
[86]WANG Y, ZHANG X, ZHANG C, et al. Isolation of single chain variable fragment (scFv) specific for Cry1C toxin from human single fold scFv libraries[J]. Toxicon,2012,60:1290-1297.
[87]XU C X, ZHANG C, ZHONG J, et al. Construction of an immunized rabbit phage display library for selecting high activity against Bacillus thuringiensis Cry1F toxin single-chain antibodies[J]. Journal of Agricultural and Food Chemistry,2017,65:6016-6022.
[88]ZHONG J, HU X, ZHANG X, et al. Broad specificity immunoassay for detection of Bacillus thuringiensis Cry toxins through engineering of a single chain variable fragment with mutagenesis and screening[J]. International Journal of Biological Macromolecules,2018,107:920-928.
[89]XU C X, ZHANG X, LIU X, et al. Selection and application of broad-specificity human domain antibody for simultaneous detection of Bt Cry toxins[J]. Analytical Biochemistry, 2016, 512:70-77.
[90]WANG P, LI G, YAN J, et al. Bactrian camel nanobody-based immunoassay for specific and sensitive detection of Cry1Fa toxin[J]. Toxicon, 2014,92:186-192.
[91]DONG S, LIU Y, ZHANG X, et al. Development of an immunochromatographic assay for the specific detection of Bacillus thuringiensis (Bt) Cry1Ab toxin[J]. Analytical Biochemistry,2019,567:1-7.
[92]ZENG H, WANG J, JIA J, et al. Development of a lateral flow test strip for simultaneous detection of BT-Cry1Ab, BT-Cry1Ac and CP4 EPSPS proteins in genetically modified crops[J]. Food Chemistry,2021,335:127627.
[93]SANTOS V O, PELEGRINI P B, MULINARI F, et al. A novel immunochromatographic strip test for rapid detection of Cry1Ac and Cry8Ka5 proteins in genetically modified crops[J]. Analytical Methods,2015,7:9331-9339.
[94]KUMAR R, SINGH C K, KAMLE S, et al. Development of nanocolloidal gold based immunochromatographic assay for rapid detection of transgenic vegetative insecticidal protein in genetically modified crops[J]. Food Chemistry,2010,122:1298-1303.
[95]KUMAR R. Development of dipsticks for simultaneous detection of vip3A and cry1Ab/cry1Ac transgenic proteins[J]. Journal of AOAC International,2012,95:1131-1137.
[96]徐重新,陈莎莎,张霄,等. 基于双抗夹心的Cry1B毒素蛋白质TRFIA检测方法的建立与评价[J]. 江苏农业学报,2013,29(1):184-188.
[97]徐重新,杨晶祎,陆梦晓,等. 间接竞争时间分辨荧光免疫分析法检测稻米中Cry1C毒素[J]. 南京农业大学学报,2014,37(6):44-48.
[98]XU C X, LIU X, ZHANG C, et al. Establishment of a sensitive time-resolved fluoroimmunoassay for detection of Bacillus thuringiensis Cry1Ie toxin based nanobody from a phage display library[J]. Analytical Biochemistry,2017,518:53-59.
[99]徐重新,程诚,张霄,等. Bt Cry1F 毒素多克隆抗体制备及其检测应用[J]. 农产品质量与安全,2016(4):47-51.
[100]ZHU X, CHEN L, SHEN P, et al. High sensitive detection of Cry1Ab protein using a quantum dot-based fluorescence-linked immunosorbent assay[J]. Journal of Agricultural and Food Chemistry,2011,59:2184-2189.
[101]QIU Y, YOU A, FU X, et al. Quantum-dot-bead-based fluorescence-linked immunosorbent assay for sensitive detection of Cry2A toxin in cereals using nanobodies[J]. Foods,2022,11:2780.
[102]QIU Y, YOU A, ZHANG M, et al. Phage-displayed nanobody-based fluorescence-linked immunosorbent assay for the detection of Cry3Bb toxin in corn[J]. Lwt,2022,171:114094.
[103]CHENG X, SUN L, LI R, et al. Organic polymer dot-based fluorometric determination of the activity of horseradish peroxidase and of the concentrations of glucose and the insecticidal protein toxin Cry1Ab/Ac[J]. Mikrochim Acta,2019,186:731.
[104]LIU C, ZHOU Z, ZOU L, et al. High sensitivity Bacillus thuringiensis Cry1Ac protein detections using fluorescein diacetate nanoparticles[J]. Journal of Fluorescence,2016,26:451-457.
[105]GIOVANNOLI C, ANFOSSI L, BAGGIANI C, et al. Binding properties of a monoclonal antibody against the Cry1Ab from Bacillus thuringensis for the development of a capillary electrophoresis competitive immunoassay[J]. Analytical and Bioanalytical Chemistry,2008,392:385-393.
[106]RODA A, MIRASOLI M, GUARDIGLI M, et al. Development and validation of a sensitive and fast chemiluminescent enzyme immunoassay for the detection of genetically modified maize[J]. Analytical and Bioanalytical Chemistry,2006,384:1269-1275.
[107]QIU Y, LI P, LIU B, et al. Phage-displayed nanobody based double antibody sandwich chemiluminescent immunoassay for the detection of Cry2A toxin in cereals[J]. Food and Agricultural Immunology,2019,30(1):924-936.
[108]QIU Y L, LI P, DONG S, et al. Phage-mediated competitive chemiluminescent immunoassay for detecting Cry1Ab toxin by using an anti-idiotypic camel nanobody[J]. Journal of Agricultural and Food Chemistry,2018,66(4):950-956.
[109]GAO H F, WEN L K, HUA W, et al. Highly sensitive immunosensing platform for one-step detection of genetically modified crops[J]. Scientific Reports,2019,9(1):16117.
[110]BRANDO-DIAS P F P, DEATSCH A E, TANK J L, et al. Novel field-based protein detection method using light transmission spectroscopy and antibody functionalized gold nanoparticles[J]. Nano Letters,2022,22(7):2611-2617.
[111]GAO H, WEN L, WU Y, et al. An ultrasensitive label-free electrochemiluminescent immunosensor for measuring Cry1Ab level and genetically modified crops content[J]. Biosensors Bioelectronics,2017,97:122-127.
[112]ZHU M, LI M, LI G, et al. Nanobody-based electrochemical immunoassay for Bacillus thuringiensis Cry1Ab toxin by detecting the enzymatic formation of polyaniline[J]. Microchimica Acta,2015,182:2451-2459.
[113]CHEN X, ZHANG D, LIN H, et al. MXene catalyzed Faraday cage-type electrochemiluminescence immunosensor for the detection of genetically modified crops[J]. Sensors and Actuators B:Chemical,2021,346:130549 .
[114]VOLPE G, AMMID N H, MOSCONE D, et al. Development of an immunomagnetic electrochemical sensor for detection of BT-CRY1AB/CRY1AC proteins in genetically modified corn samples[J]. Analytical Letters,2006,39:1599-1609.
[115]FREITAS M, CORRER W, CANCINO-BERNARDI J, et al. Impedimetric immunosensors for the detection of Cry1Ab protein from genetically modified maize seeds[J]. Sensors and Actuators B:Chemical,2016,237:702-709.
[116]LI J P, XU Q, WEI X P, et al. Electrogenerated chemiluminescence immunosensor for Bacillus thuringiensis Cry1Ac based on Fe3O4@Au nanoparticles[J]. Journal of Agricultural and Food Chemistry,2013,61:1435-1440.
[117]ZHOU Q, LI G, ZHANG Y, et al. Highly selective and sensitive electrochemical immunoassay of Cry1C using nanobody and π-π stacked graphene Oxide/Thionine assembly[J]. Analytical Chemistry,2016,88:9830-9836.
[118]MENG S, ZHANG N, LIU D, et al. Plasmonically enhanced photoelectrochemical immunoassay based on Au nanoparticle-loaded PAMAM dendrimers for Cry1Ab protein detection[J]. ACS Applied Nano Materials,2020,3:9425-9432.
[119]MENG S, LIU D, LI Y, et al. Engineering the signal transduction between CdTe and CdSe quantum dots for in situ ratiometric photoelectrochemical immunoassay of Cry1Ab protein[J]. Journal of Agricultural and Food Chemistry,2022,70:13583-13591.
[120]MENG S, LIU D, LI Y, et al. Photoelectrochemical and visual dual-mode sensor for efficient detection of Cry1Ab protein based on the proximity hybridization driven specific desorption of multifunctional probe[J]. Journal of Hazardous Materials,2023,441:129759.
[121]MENG S, LI Y, DONG N, et al. Portable visual photoelectrochemical biosensor based on a MgTi2O5/CdSe heterojunction and reversible electrochromic supercapacitor for dual-modal Cry1Ab protein detection[J]. Analytical Chemistry,2023,95:18224-18232.
[122]MING H, WANG M, YIN H. Detection of Bacillus thuringiensis Cry1Ab protein based on surface plasmon resonance immunosensor[J]. Analytical Biochemistry,2015,468:59-65.
[123]ALLEN R C, ROGELJ S, CORDOVA S E, et al. An immuno-PCR method for detecting Bacillus thuringiensis Cry1Ac toxin[J]. Journal of Immunological Methods,2006,308:109-115.
[124]LIU Y, JIANG D, LU X, et al. Phage-mediated immuno-PCR for ultrasensitive detection of Cry1Ac protein based on nanobody[J]. Journal of Agricultural and Food Chemistry,2016,64:7882-7889.
[125]徐重新,金嘉凤,沈成,等. 具杀虫功能的蛋白类生物材料研究进展[J]. 农药学学报,2023,25(5):990-1003.
[126]DOWNING K J, THOMSON J A. Introduction of the Serratia marcescens chiA gene into an endophytic Pseudomonas fluorescens for the biocontrol of phytopathogenic fungi[J]. Canadian journal of Microbiology,2000,46:363-369.
[127]QI G, LAN N, MA X, et al. Controlling Myzus persicae with recombinant endophytic fungi Chaetomium globosum expressing Pinellia ternata agglutinin:using recombinant endophytic fungi to control aphids[J]. Journal of Applied Microbiology, 2011, 110:1314-1322.
[128]IWABUCHI K, MIYAMOTO K, JOURAKU A, et al. ABC transporter subfamily B1 as a susceptibility determinant of Bombyx mori larvae to Cry1Ba, Cry1Ia and Cry9Da toxins[J]. Insect Biochemistry and Molecular Biology, 2023, 163:104030.
[129]徐重新,刘媛,张霄,等. Bt Cry毒素抗虫模拟物靶向创新设计[J]. 生物工程学报,2023,39(2):446-458.
[130]PARDO-LOPEZ L, SOBERON M, BRAVO A. Bacillus thuringiensis insecticidal three-domain Cry toxins:mode of action, insect resistance and consequences for crop protection[J]. FEMS Microbiology Reviews,2013,37:3-22.
[131]WAN Z, CHEN Y, HU S, et al. A peptide Epitope-synthetic hydrogel polymer conjugate that mimics insecticidal protein receptors. Application in environmental and biological analysis[J]. Chemical Engineering Journal,2023,451:138671.
[132]WANG Y, ZHANG X, XIE Y, et al. High-affinity phage-displayed peptide as a recognition probe for the detection of Cry2Ad2-3[J]. International Journal of Biological Macromolecules,2019,137:562-567.
[133]LU X, JIANG D J, YAN J X, et al. An ultrasensitive electrochemical immunosensor for Cry1Ab based on phage displayed peptides[J]. Talanta,2018,179:646-651.
[134]JIN S, YE Z, WANG Y, et al. A novel impedimetric microfluidic analysis system for transgenic protein Cry1Ab detection[J]. Scientific Reports,2017,7:43175.
[135]CHEN K, HAN H, LOU Z, et al. A practicable detection system for genetically modified rice by SERS-barcoded nanosensors[J]. Biosensors Bioelectronics,2012,34:118-124.