[1]徐重新,沈建兴,金嘉凤,等.Bt毒素表达应用及其残留风险与免疫检测研究进展[J].江苏农业学报,2024,(12):2387-2400.[doi:doi:10.3969/j.issn.1000-4440.2024.12.022]
 XU Chongxin,SHEN Jianxing,JIN Jiafeng,et al.Research progress on the expression and application of Bt toxin and its residue risk and immunoassay[J].,2024,(12):2387-2400.[doi:doi:10.3969/j.issn.1000-4440.2024.12.022]
点击复制

Bt毒素表达应用及其残留风险与免疫检测研究进展()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年12期
页码:
2387-2400
栏目:
综述
出版日期:
2024-12-30

文章信息/Info

Title:
Research progress on the expression and application of Bt toxin and its residue risk and immunoassay
作者:
徐重新12沈建兴12金嘉凤12陈蔚2张霄2刘媛2刘贤金2
(1.江苏大学食品与生物工程学院,江苏镇江212013;2.江苏省农业科学院农产品质量安全与营养研究所/省部共建国家重点实验室培育基地——江苏省食品质量安全重点实验室,江苏南京210014)
Author(s):
XU Chongxin12SHEN Jianxing12JIN Jiafeng12CHEN Wei2ZHANG Xiao2LIU Yuan2LIU Xianjin2
(1.School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;2.Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences/State Key Laboratory Cultivation Base, Ministry of Science and Technology——Jiangsu Key Laboratory for Food Quality and Safety, Nanjing 210014, China)
关键词:
Bt毒素杀虫蛋白质蛋白质表达转基因作物农药残留免疫检测
Keywords:
Bt toxininsecticidal proteinprotein expressiongenetically modified cropspesticide residueimmunoassay
分类号:
S481
DOI:
doi:10.3969/j.issn.1000-4440.2024.12.022
文献标志码:
A
摘要:
Bt毒素是苏云金芽孢杆菌产生的一类生物大分子蛋白质,对多种常见的农林害虫甚至卫生媒介蚊虫都有特异性毒杀活性,是具备重大经济价值和生态环境效益的绿色抗虫材料。然而,随着Bt毒素制剂和转基因抗虫作物长期应用,致使靶标害虫抗药性进化加快,并对非靶标生物的交互毒性等潜在风险加大,因此对其残留监测成了农业食品和环境安全风险评估的重要内容。本研究梳理了Bt毒素传统的依托微生物表达体系的制剂和植物表达体系的转基因抗虫作物应用及其对靶标害虫抗药性和非靶标生物交互毒性潜在风险的研究现状,概述了针对Bt毒素残留分析的免疫检测研究进展;并结合本研究团队近年来依托热门的噬菌体展示抗体库技术,在Bt毒素特异性基因工程抗体创制以及Bt毒素抗虫模拟物靶向设计等方面的最新研究成果,探讨了基于Bt毒素的新型安全杀虫蛋白质创新研发与应用策略及其毒素蛋白质残留检测技术创新等未来潜在发展动向和可行捷径,为进一步围绕Bt毒素的相关研究提供有价值的文献资料和新的思路。
Abstract:
Bt toxin is a kind of biological macromolecular protein produced by Bacillus thuringiensis, which has specific toxic activity for many common agricultural and forestry pests and even health mosquito vectors, and is a green insect-resistant material with great economic value and ecological and environmental benefits. However, with the long-term use of Bt toxin preparations and Bt-transgenic crops, the potential risks of their exposure, such as driving the evolution of resistance to target pests and cross-toxicity to non-target organisms, have attracted much attention. Therefore, monitoring their residues has become an important part of agriculture, food and environmental safety risk assessment. This paper reviewed the current status of research on the application of Bt toxin traditional preparations based on microbial expression system and transgenic insect-resistant crops based on plant expression system, as well as the potential risk of resistance to target pests and cross-toxicity of non-target organisms, and summarized the research progress of immunoassay for Bt toxin residues monitoring. Combined with the latest research results of our research team in the creation of Bt toxin-specific genetic engineering antibodies and the targeted design of Bt toxin anti-insect mimics based on the popular phage display antibody library technology in recent years, the innovative research and development and application strategies of new safe insecticidal proteins based on Bt toxins and the future potential development trends and feasible shortcuts of technological innovation in the detection of toxin protein residues were discussed. This paper can provide valuable literature and new ideas for further research on Bt toxin.

参考文献/References:

[1]PALMA L, MUOZ D, BERRY C, et al. Bacillus thuringiensis toxins:an overview of their biocidal activity[J]. Toxins,2014,6(12):3296-3325.
[2]徐重新,金嘉凤,孙晓明,等. 基于Bt毒素的杀虫蛋白理性设计与创新应用策略[J]. 中国农业科学,2024,57 (1):96-125.
[3]耿丽丽,陶岭梅,张宏军,等. 苏云金芽孢杆菌安全性的研究进展[J]. 中国生物防治学报,2021,37(1):2-10.
[4]ISAAA. Global status of commercialized biotech/GM crops in 2019:biotech crops drive socio-economic development and sustainable environment in the new frontier[R/OL]. Ithaca:ISAAA,2020. https://www.isaaa.org/resources/publications/briefs/55/default.asp.
[5]JURAT-FUENTES J L, HECKEL D G, FERR J. Mechanisms of resistance to insecticidal proteins from Bacillus thuringiensis[J]. Annual Review of Entomology,2021,66:121-140.
[6]JIAO Y, YANG Y, MEISSLE M, et al. Comparison of susceptibility of Chilo suppressalis and Bombyx mori to five Bacillus thuringiensis proteins[J]. Journal of Invertebrate Pathology,2016,136:95-99.
[7]KOCH M S, WARD J M, LEVINE S L, et al. The food and environmental safety of Bt crops[J]. Frontiers in Plant Science,2015,6:283.
[8]FAHEEM A, QIN Y, NAN W, et al. Advances in the immunoassays for detection of Bacillus thuringiensis crystalline toxins[J]. Journal of Agricultural and Food Chemistry, 2021,69:10407-10418.
[9]PENG Q, YU Q, SONG F. Expression of cry genes in Bacillus thuringiensis biotechnology[J]. Applied Microbiology and Biotechnology,2019,103:1617-1626.
[10]DENG C, PENG Q, SONG F, et al. Regulation of cry gene expression in Bacillus thuringiensis[J]. Toxins,2014,6:2194-2209.
[11]ROSANO G L, CECCARELLI E A. Recombinant protein expression in Escherichia coli:advances and challenges[J]. Frontiers in Microbiology,2014,5:172.
[12]BUKHARI D A, SHAKOORI A R. Cloning and expression of Bacillus thuringiensis cry11 crystal protein gene in Escherichia coli[J]. Molecular Biology Reports,2009,36:1661-1670.
[13]GURKAN C, ELLAR D. Expression of the Bacillus thuringiensis Cyt2Aa I toxin in Pichia pastoris using a synthetic gene construct[J]. Biotechnology and Applied Biochemistry,2003,38:25-33.
[14]DENG S Q, ZOU W H, LI D L, et al. Expression of Bacillus thuringiensis toxin Cyt2Ba in the entomopathogenic fungus Beauveria bassiana increases its virulence towards Aedes mosquitoes[J]. PLoS Neglected Tropical Diseases,2019,13:e0007590.
[15]TOUNSI S, AOUN A E, BLIGHT M, et al. Evidence of oral toxicity of Photorhabdus temperata strain K122 against Prays oleae and its improvement by heterologous expression of Bacillus thuringiensis cry1Aa and cry1Ia genes[J]. Journal of Invertebrate Pathology,2006,91:131-135.
[16]HERNNDEZ-RODRGUEZ C S, RUIZ DE ESCUDERO I, ASENSIO A, et al. Encapsulation of the Bacillus thuringiensis secretable toxins Vip3Aa and Cry1Ia in Pseudomonas fluorescens[J]. Biological Control, 2013,66:159-165.
[17]DURMAZ E, HU Y, AROIAN R V, et al. Intracellular and extracellular expression of Bacillus thuringiensis crystal protein Cry5B in Lactococcus lactis for use as an anthelminthic[J]. Applied and Environmental Microbiology, 2016, 82:1286-1294.
[18]QIN Y, YING S H, CHEN Y, et al. Integration of insecticidal protein Vip3Aa1 into Beauveria bassiana enhances fungal virulence to Spodoptera litura larvae by cuticle and per Os infection[J]. Applied and Environmental Microbiology,2010,76:4611-4618.
[19]PACHECO S, CANTON E, ZUNIGA-NAVARRETE F, et al. Improvement and efficient display of Bacillus thuringiensis toxins on M13 phages and ribosomes[J]. AMB Express,2015,5:73.
[20]RUBIO-INFANTE N, MORENO-FIERROS L. An overview of the safety and biological effects of Bacillus thuringiensis Cry toxins in mammals[J]. Journal of Applied Toxicology,2016,36:630-648.
[21]YANG Y Y, MEI F, ZHANG W, et al. Creation of Bt rice expressing a fusion protein of Cry1Ac and Cry1I-like using a green tissue-specific promoter[J]. Journal of Economic Entomology,2014,107:1674-1679.
[22]DU D, GENG C, ZHANG X, et al. Transgenic maize lines expressing a cry1C* gene are resistant to insect pests[J]. Plant Molecular Biology Reporter,2014,32:549-557.
[23]CHAKRABARTI S K, LUTZ K A, LERTWIRIYAWONG B, et al. Expression of the cry9Aa2 B.t. gene in tobacco chloroplasts confers resistance to potato tuber moth[J]. Transgenic Research,2006,15:481-488.
[24]WANG Y, ZHANG L, LI Y, et al. Expression of Cry1Ab protein in a marker-free transgenic Bt rice line and its efficacy in controlling a target pest, Chilo suppressalis (Lepidoptera:Crambidae)[J]. Environmental Entomology,2014,43:528-536.
[25]CHEN H, HUANG Y, YE M, et al. Achieving high expression of cry in green tissues and negligible expression in endosperm simultaneously via rbcS gene fusion strategy in rice[J]. International Journal of Molecular Sciences,2023,24(10):9045.
[26]XU C, CHENG J, LIN H, et al. Characterization of transgenic rice expressing fusion protein Cry1Ab/Vip3A for insect resistance[J]. Scientific Reports,2018,8:15788.
[27]YE R, HUANG H, YANG Z, et al. Development of insect-resistant transgenic rice with Cry1C* free endosperm[J]. Pest Management Science,2009,65:1015-1020.
[28]CHEN H, TANG W, XU C G, et al. Genetics, transgenic indica rice plants harboring a synthetic cry2A* gene of Bacillus thuringiensis exhibit enhanced resistance against lepidopteran rice pests[J]. Theoretical and Applied Genetics,2005,111:1330-1337.
[29]CHAKRABORTY M, REDDY P S, MUSTAFA G, et al. Transgenic rice expressing the cry2AX1 gene confers resistance to multiple lepidopteran pests[J]. Transgenic Research,2016,25:665-678.
[30]LIANG J G, ZHANG D D, LI D Y, et al. Expression profiles of Cry1Ab protein and its insecticidal efficacy against the invasive fall armyworm for Chinese domestic GM maize DBN9936[J]. Journal of Integrative Agriculture,2021,20:792-803.
[31]CHEN H X, YANG R, YANG W, et al. Efficacy of Bt maize producing the Cry1Ac protein against two important pests of corn in China[J]. Environmental Science and Pollution Research,2016,23:21511-21516.
[32]LI X Y, LANG Z H, ZHANG J, et al. Acquisition of insect-resistant transgenic maize harboring a truncated cry1Ah gene via agrobacterium-mediated transformation[J]. Journal of Integrative Agriculture,2014,13:937-944.
[33]CHEN S, WANG W, KANG G, et al. Toxic effects of Bt-(Cry1Ab+Vip3Aa) maize on storage pest Paralipsa gularis (Zeller)[J]. Toxins,2024,16(2):92.
[34]NGUYEN H T, JEHLE J A. Expression of Cry3Bb1 in transgenic corn MON88017[J]. Journal of Agricultural and Food Chemistry,2009,57:9990-9996.
[35]MEIYALAGHAN S, JACOBS J M E, BUTLER R C, et al. Transgenic potato lines expressing cry1Ba1 or cry1Ca5 genes are resistant to potato tuber moth[J]. Potato Research,2006,49:203-216.
[36]YU H, LI Y, LI X, et al. Expression of Cry1Ac in transgenic Bt soybean lines and their efficiency in controlling lepidopteran pests[J]. Pest Management Science,2013,69:1326-1333.
[37]QIN D, LIU X Y, MICELI C, et al. Soybean plants expressing the Bacillus thuringiensis cry8-like gene show resistance to Holotrichia parallela[J]. BMC Biotechnology,2019,19:66.
[38]KHATODIA S. Molecular characterization of Bt chickpea (Cicer arietinum L.) plants carrying cry1Aa3 gene[J]. International Journal of Current Microbiology and Applied Sciences,2014,3:632-642.
[39]KHATODIA S, KHARB P, BATRA P, et al. Development and characterization of transgenic chickpea (Cicer arietinum L.) plants with cry1Ac gene using tissue culture independent protocol[J]. International Journal of Advanced Research,2014,2:323-331.
[40]MEHROTRA M, SINGH A K, SANYAL I, et al. Pyramiding of modified cry1Ab and cry1Ac genes of Bacillus thuringiensis in transgenic chickpea (Cicer arietinum L.) for improved resistance to pod borer insect Helicoverpa armigera[J]. Euphytica,2011,182:87-102.
[41]DAS A, DATTA S, SUJAYANAND G K, et al. Expression of chimeric Bt gene, Cry1Aabc in transgenic pigeonpea (cv. Asha) confers resistance to gram pod borer (Helicoverpa armigera Hubner.)[J]. Plant Cell, Tissue and Organ Culture,2016,127:705-715.
[42]SINGH S, KUMAR N R, MANIRAJ R, et al. Expression of Cry2Aa, a Bacillus thuringiensis insecticidal protein in transgenic pigeon pea confers resistance to gram pod borer, Helicoverpa armigera[J]. Scientific Reports,2018,8:8820.
[43]BETT B, GOLLASCH S, MOORE A, et al. Transgenic cowpeas (Vigna unguiculata L. Walp) expressing Bacillus thuringiensis Vip3Ba protein are protected against the Maruca pod borer (Maruca vitrata)[J]. Plant Cell,Tissue and Organ Culture,2017,131:335-345.
[44]KIM Y, KANG J, KIM J, et al. Effects of Bt transgenic Chinese cabbage on the herbivore Mamestra brassicae (Lepidoptera:Noctuidae) and its parasitoid Microplitis mediator (Hymenoptera:Braconidae)[J]. Journal of Economic Entomology,2008,101:1134-1139.
[45]WANG Y, ZHANG Y, WANG F, et al. Development of transgenic Brassica napus with an optimized cry1C* gene for resistance to diamondback moth (Plutella xylostella)[J]. Canadian Journal of Plant Science,2014,94:1501-1506.
[46]KESHAVAREDDY G, ROHINI S, RAMU S V, et al. Transgenics in groundnut (Arachis hypogaea L.) expressing cry1AcF gene for resistance to Spodoptera litura (F.)[J]. Physiology and Molecular Biology of Plants,2013,19:343-352.
[47]TORRES J B, RUBERSON J R, ADANG M J. Expression of Bacillus thuringiensis Cry1Ac protein in cotton plants, acquisition by pests and predators:a tritrophic analysis[J]. Agricultural and Forest Entomology,2006,8:191-202.
[48]SIEBERT M, PATTERSON T G, GILLES G J, et al. Quantification of Cry1Ac and Cry1F Bacillus thuringiensis insecticidal proteins in selected transgenic cotton plant tissue types[J]. Journal of Economic Entomology,2009,102:1301-1308.
[49]WANG Q, ZHU Y, SUN L, et al. Transgenic Bt cotton driven by the green tissue-specific promoter shows strong toxicity to lepidopteran pests and lower Bt toxin accumulation in seeds[J]. Science China-life Sciences,2016,59:172-182.
[50]RIBEIRO T P, ARRAES F B M, LOURENCO-TESSUTTI I T, et al. Transgenic cotton expressing Cry10Aa toxin confers high resistance to the cotton boll weevil[J]. Plant Biotechnology Journal,2017,15:997-1009.
[51]LI S, WANG Z, ZHOU Y, et al. Expression of cry2Ah1 and two domain II mutants in transgenic tobacco confers high resistance to susceptible and Cry1Ac-resistant cotton bollworm[J]. Scientific Reports,2018,8:508.
[52]LUCIANI G, ALTPETER F, CHANG J, et al. Expression of cry1Fa in Bahiagrass enhances resistance to fall armyworm[J]. Crop Science,2007,47:2430-2436.
[53]MUDDANURU T, POLUMETLA A K, MADDUKURI L,et al. Development and evaluation of transgenic castor (Ricinus communis L.) expressing the insecticidal protein Cry1Aa of Bacillus thuringiensis against lepidopteran insect pests[J]. Crop Protection,2019,119:113-125.
[54]MAJUMDER S, DATTA K, SATPATHY S, et al. Development and evaluation of lepidopteran insect resistant jute expressing the fused Bt-Cry1Ab/Ac toxin driven by CaMV35S promoter[J]. Industrial Crops and Products,2020,156:112873.
[55]SINGH A K, DUBEY S K. Current trends in Bt crops and their fate on associated microbial community dynamics:a review[J]. Protoplasma,2016,253:663-681.
[56]LIU J, LIANG Y S, HU T, et al. Environmental fate of Bt proteins in soil:transport, adsorption/desorption and degradation[J]. Ecotoxicology and Environmental Safety, 2021, 226:112805.
[57]ZHANG L, SHEN W, FANG Z, et al. Effects of genetically modified maize expressing Cry1Ab and EPSPS proteins on Japanese quail[J]. Poultry Science,2021,100:1068-1075.
[58]GAO Y J, ZHU H J, CHEN Y, et al. Safety assessment of Bacillus thuringiensis insecticidal proteins Cry1C and Cry2A with a Zebrafish embryotoxicity test[J]. Journal of Agricultural and Food Chemistry,2018,66:4336-4344.
[59]DAI P L, JIA H R, GENG L L, et al. Bt toxin Cry1Ie causes no negative effects on survival, pollen consumption, or olfactory learning in worker Honey Bees (Hymenoptera:Apidae)[J]. Journal of Economic Entomology,2016,109:1028-1033.
[60]WU F, JIANG Z, WANG B, et al. Biochemical analyses demonstrate that Bt maize has no adverse effects on Eisenia fetida[J]. PLoS One,2022,17:e0269303.
[61]LI Y, MEISSLE M, ROMEIS J. Consumption of Bt maize pollen expressing Cry1Ab or Cry3Bb1 does not harm adult green Lacewings, Chrysoperla carnea (Neuroptera:Chrysopidae)[J]. PLoS One,2008,3:e2909.
[62]SHU Y, ZHANG Y, ZENG H, et al. Effects of Cry1Ab Bt maize straw return on bacterial community of earthworm Eisenia fetida[J]. Chemosphere,2017,173:1-13.
[63]LIU X, ZHANG Q, ZHAO J Z, et al. Effects of the Cry1Ac toxin of Bacillus thuringiensis on Microplitis mediator, a parasitoid of the cotton bollworm, Helicoverpa armigera[J]. Entomologia Experimentalis et Applicata,2005,114(3):205-213.
[64]ROLIM G D S, PLATA-RUEDA A, MARTINEZ L C, et al. Side effects of Bacillus thuringiensis on the parasitoid Palmistichus elaeisis (Hymenoptera:Eulophidae)[J]. Ecotoxicology and Environmental Safety,2020,189:109978.
[65]AMICHOT M, CURTY C, GALLET A, et al. Side effects of Bacillus thuringiensis var. kurstaki on the hymenopterous parasitic wasp Trichogramma chilonis[J]. Environmental Science and Pollution Research,2016,23:3097-3103.
[66]徐重新,刘媛,李建宏,等. 基因工程抗体在微囊藻毒素检测分析上的应用研究[J]. 分析测试学报,2019,38(3):372-378.
[67]YE R, CHEN H, LI H. One-pot synthesis of HRP&SA/ZIF-8 nanocomposite and its application in the detection of insecticidal crystalline protein Cry1Ab[J]. Nanomaterials,2022,12:2679.
[68]KANAGASUBBULAKSHMI S, KADIRVELU K. Paper-based simplified visual detection of Cry2Ab insecticide from transgenic cottonseed samples using integrated quantum dots-IgY antibodies[J]. Journal of Agricultural and Food Chemistry,2021,69:4074-4080.
[69]CHEN C X, WU J. A fast and sensitive quantitative lateral flow immunoassay for Cry1Ab based on a novel signal amplification conjugate[J]. Sensors,2012,12(9):11684-11696.
[70]LIANG J, WU Y, LIU C, et al. Preparation of high stable core/shell magnetic nanoparticles and application in Bacillus thuringiensis Cry1Ac proteins detection[J]. Sensors and Actuators B:Chemical,2017, 241:758-764.
[71]WALSCHUS U W E, WITT S, WITTMANN C. Development of monoclonal antibodies against Cry1Ab protein from Bacillus thuringiensis and their application in an ELISA for detection of transgenic Bt-maize[J]. Food and Agricultural Immunology,2010,14:231-240.
[72]DONG S, ZHANG X, LIU Y, et al. Establishment of a sandwich enzyme-linked immunosorbent assay for specific detection of Bacillus thuringiensis (Bt) Cry1Ab toxin utilizing a monoclonal antibody produced with a novel hapten designed with molecular model[J]. Analytical and Bioanalytical Chemistry,2017,409:1985-1994.
[73]PAUL V, STEINKE K, MEYER H H. Development and validation of a sensitive enzyme immunoassay for surveillance of Cry1Ab toxin in bovine blood plasma of cows fed Bt-maize (MON810)[J]. Analytica Chimica Acta,2008,607(1):106-113.
[74]ZHANG X, XU C X, ZHANG C, et al. Established a new double antibodies sandwich enzyme-linked immunosorbent assay for detecting Bacillus thuringiensis (Bt) Cry1Ab toxin based single-chain variable fragments from a naive mouse phage displayed library[J]. Toxicon,2014,81:13-22.
[75]WANG S, GUO A Y, ZHENG W J, et al. Development of ELISA for the determination of transgenic Bt-cottons using antibodies against Cry1Ac protein from Bacillus thuringiensis HD-73[J]. Engineering in Life Sciences,2007,7:149-154.
[76]LI M, ZHU M, ZHANG C Z, et al. Uniform orientation of biotinylated nanobody as an affinity binder for detection of Bacillus thuringiensis (Bt) Cry1Ac toxin[J]. Toxins,2014,6(12):3208-3222.
[77]ZHONG W J, LI G H, YU X L, et al. Sensitive detection of Bacillus thuringiensis Cry1B toxin based on camel single-domain antibodies[J]. Microbiologyopen,2018,7(4):e00581.
[78]ZHANG Y W, ZHANG W, LIU Y, et al. Development of monoclonal antibody-based sensitive ELISA for the determination of Cry1Ie protein in transgenic plant[J]. Analytical and Bioanalytical Chemistry,2016,408(28):8231-8239.
[79]SHEN C, HAO J, LI Y H, et al. Establishment of monoclonal antibody and scFv immuno-based assay for Cry2Aa toxin in spiked grain samples[J]. Analytical Biochemistry,2023,677:115270.
[80]LIU W X, LIU X R, LIU C, et al. Development of a sensitive monoclonal antibody-based sandwich ELISA to detect Vip3Aa in genetically modified crops[J]. Biotechnology Letters,2020,42(8):1467-1478.
[81]DONG S, GAO M, GUAN L, et al. Construction, expression, and identification of double light chain (VL-VL) antibody from a unique Bt Cry1-specific monoclonal antibody[J]. Food Analytical Methods,2020,13:1570-1582.
[82]DONG S, ZHANG C, LIU Y, et al. Simultaneous production of monoclonal antibodies against Bacillus thuringiensis (Bt) Cry1 toxins using a mixture immunization[J]. Analytical Biochemistry,2017,531:60-66.
[83]DONG S, BO Z, ZHANG C, et al. Screening for single-chain variable fragment antibodies against multiple Cry1 toxins from an immunized mouse phage display antibody library[J]. Applied Microbiology and Biotechnology,2018,102:3363-3374.
[84]SHEN C, MENG M, JIN J, et al. Establishment of novel receptor-antibody sandwich assays to broadly detect Bacillus thuringiensis Cry1 and Cry2 toxins[J]. International Journal of Biological Macromolecules,2024,254:128034.
[85]ZHANG X, LIU Y, ZHANG C, et al. Rapid isolation of single-chain antibodies from a human synthetic phage display library for detection of Bacillus thuringiensis (Bt) Cry1B toxin[J]. Ecotoxicology and Environmental Safety,2012,81:84-90.
[86]WANG Y, ZHANG X, ZHANG C, et al. Isolation of single chain variable fragment (scFv) specific for Cry1C toxin from human single fold scFv libraries[J]. Toxicon,2012,60:1290-1297.
[87]XU C X, ZHANG C, ZHONG J, et al. Construction of an immunized rabbit phage display library for selecting high activity against Bacillus thuringiensis Cry1F toxin single-chain antibodies[J]. Journal of Agricultural and Food Chemistry,2017,65:6016-6022.
[88]ZHONG J, HU X, ZHANG X, et al. Broad specificity immunoassay for detection of Bacillus thuringiensis Cry toxins through engineering of a single chain variable fragment with mutagenesis and screening[J]. International Journal of Biological Macromolecules,2018,107:920-928.
[89]XU C X, ZHANG X, LIU X, et al. Selection and application of broad-specificity human domain antibody for simultaneous detection of Bt Cry toxins[J]. Analytical Biochemistry, 2016, 512:70-77.
[90]WANG P, LI G, YAN J, et al. Bactrian camel nanobody-based immunoassay for specific and sensitive detection of Cry1Fa toxin[J]. Toxicon, 2014,92:186-192.
[91]DONG S, LIU Y, ZHANG X, et al. Development of an immunochromatographic assay for the specific detection of Bacillus thuringiensis (Bt) Cry1Ab toxin[J]. Analytical Biochemistry,2019,567:1-7.
[92]ZENG H, WANG J, JIA J, et al. Development of a lateral flow test strip for simultaneous detection of BT-Cry1Ab, BT-Cry1Ac and CP4 EPSPS proteins in genetically modified crops[J]. Food Chemistry,2021,335:127627.
[93]SANTOS V O, PELEGRINI P B, MULINARI F, et al. A novel immunochromatographic strip test for rapid detection of Cry1Ac and Cry8Ka5 proteins in genetically modified crops[J]. Analytical Methods,2015,7:9331-9339.
[94]KUMAR R, SINGH C K, KAMLE S, et al. Development of nanocolloidal gold based immunochromatographic assay for rapid detection of transgenic vegetative insecticidal protein in genetically modified crops[J]. Food Chemistry,2010,122:1298-1303.
[95]KUMAR R. Development of dipsticks for simultaneous detection of vip3A and cry1Ab/cry1Ac transgenic proteins[J]. Journal of AOAC International,2012,95:1131-1137.
[96]徐重新,陈莎莎,张霄,等. 基于双抗夹心的Cry1B毒素蛋白质TRFIA检测方法的建立与评价[J]. 江苏农业学报,2013,29(1):184-188.
[97]徐重新,杨晶祎,陆梦晓,等. 间接竞争时间分辨荧光免疫分析法检测稻米中Cry1C毒素[J]. 南京农业大学学报,2014,37(6):44-48.
[98]XU C X, LIU X, ZHANG C, et al. Establishment of a sensitive time-resolved fluoroimmunoassay for detection of Bacillus thuringiensis Cry1Ie toxin based nanobody from a phage display library[J]. Analytical Biochemistry,2017,518:53-59.
[99]徐重新,程诚,张霄,等. Bt Cry1F 毒素多克隆抗体制备及其检测应用[J]. 农产品质量与安全,2016(4):47-51.
[100]ZHU X, CHEN L, SHEN P, et al. High sensitive detection of Cry1Ab protein using a quantum dot-based fluorescence-linked immunosorbent assay[J]. Journal of Agricultural and Food Chemistry,2011,59:2184-2189.
[101]QIU Y, YOU A, FU X, et al. Quantum-dot-bead-based fluorescence-linked immunosorbent assay for sensitive detection of Cry2A toxin in cereals using nanobodies[J]. Foods,2022,11:2780.
[102]QIU Y, YOU A, ZHANG M, et al. Phage-displayed nanobody-based fluorescence-linked immunosorbent assay for the detection of Cry3Bb toxin in corn[J]. Lwt,2022,171:114094.
[103]CHENG X, SUN L, LI R, et al. Organic polymer dot-based fluorometric determination of the activity of horseradish peroxidase and of the concentrations of glucose and the insecticidal protein toxin Cry1Ab/Ac[J]. Mikrochim Acta,2019,186:731.
[104]LIU C, ZHOU Z, ZOU L, et al. High sensitivity Bacillus thuringiensis Cry1Ac protein detections using fluorescein diacetate nanoparticles[J]. Journal of Fluorescence,2016,26:451-457.
[105]GIOVANNOLI C, ANFOSSI L, BAGGIANI C, et al. Binding properties of a monoclonal antibody against the Cry1Ab from Bacillus thuringensis for the development of a capillary electrophoresis competitive immunoassay[J]. Analytical and Bioanalytical Chemistry,2008,392:385-393.
[106]RODA A, MIRASOLI M, GUARDIGLI M, et al. Development and validation of a sensitive and fast chemiluminescent enzyme immunoassay for the detection of genetically modified maize[J]. Analytical and Bioanalytical Chemistry,2006,384:1269-1275.
[107]QIU Y, LI P, LIU B, et al. Phage-displayed nanobody based double antibody sandwich chemiluminescent immunoassay for the detection of Cry2A toxin in cereals[J]. Food and Agricultural Immunology,2019,30(1):924-936.
[108]QIU Y L, LI P, DONG S, et al. Phage-mediated competitive chemiluminescent immunoassay for detecting Cry1Ab toxin by using an anti-idiotypic camel nanobody[J]. Journal of Agricultural and Food Chemistry,2018,66(4):950-956.
[109]GAO H F, WEN L K, HUA W, et al. Highly sensitive immunosensing platform for one-step detection of genetically modified crops[J]. Scientific Reports,2019,9(1):16117.
[110]BRANDO-DIAS P F P, DEATSCH A E, TANK J L, et al. Novel field-based protein detection method using light transmission spectroscopy and antibody functionalized gold nanoparticles[J]. Nano Letters,2022,22(7):2611-2617.
[111]GAO H, WEN L, WU Y, et al. An ultrasensitive label-free electrochemiluminescent immunosensor for measuring Cry1Ab level and genetically modified crops content[J]. Biosensors Bioelectronics,2017,97:122-127.
[112]ZHU M, LI M, LI G, et al. Nanobody-based electrochemical immunoassay for Bacillus thuringiensis Cry1Ab toxin by detecting the enzymatic formation of polyaniline[J]. Microchimica Acta,2015,182:2451-2459.
[113]CHEN X, ZHANG D, LIN H, et al. MXene catalyzed Faraday cage-type electrochemiluminescence immunosensor for the detection of genetically modified crops[J]. Sensors and Actuators B:Chemical,2021,346:130549 .
[114]VOLPE G, AMMID N H, MOSCONE D, et al. Development of an immunomagnetic electrochemical sensor for detection of BT-CRY1AB/CRY1AC proteins in genetically modified corn samples[J]. Analytical Letters,2006,39:1599-1609.
[115]FREITAS M, CORRER W, CANCINO-BERNARDI J, et al. Impedimetric immunosensors for the detection of Cry1Ab protein from genetically modified maize seeds[J]. Sensors and Actuators B:Chemical,2016,237:702-709.
[116]LI J P, XU Q, WEI X P, et al. Electrogenerated chemiluminescence immunosensor for Bacillus thuringiensis Cry1Ac based on Fe3O4@Au nanoparticles[J]. Journal of Agricultural and Food Chemistry,2013,61:1435-1440.
[117]ZHOU Q, LI G, ZHANG Y, et al. Highly selective and sensitive electrochemical immunoassay of Cry1C using nanobody and π-π stacked graphene Oxide/Thionine assembly[J]. Analytical Chemistry,2016,88:9830-9836.
[118]MENG S, ZHANG N, LIU D, et al. Plasmonically enhanced photoelectrochemical immunoassay based on Au nanoparticle-loaded PAMAM dendrimers for Cry1Ab protein detection[J]. ACS Applied Nano Materials,2020,3:9425-9432.
[119]MENG S, LIU D, LI Y, et al. Engineering the signal transduction between CdTe and CdSe quantum dots for in situ ratiometric photoelectrochemical immunoassay of Cry1Ab protein[J]. Journal of Agricultural and Food Chemistry,2022,70:13583-13591.
[120]MENG S, LIU D, LI Y, et al. Photoelectrochemical and visual dual-mode sensor for efficient detection of Cry1Ab protein based on the proximity hybridization driven specific desorption of multifunctional probe[J]. Journal of Hazardous Materials,2023,441:129759.
[121]MENG S, LI Y, DONG N, et al. Portable visual photoelectrochemical biosensor based on a MgTi2O5/CdSe heterojunction and reversible electrochromic supercapacitor for dual-modal Cry1Ab protein detection[J]. Analytical Chemistry,2023,95:18224-18232.
[122]MING H, WANG M, YIN H. Detection of Bacillus thuringiensis Cry1Ab protein based on surface plasmon resonance immunosensor[J]. Analytical Biochemistry,2015,468:59-65.
[123]ALLEN R C, ROGELJ S, CORDOVA S E, et al. An immuno-PCR method for detecting Bacillus thuringiensis Cry1Ac toxin[J]. Journal of Immunological Methods,2006,308:109-115.
[124]LIU Y, JIANG D, LU X, et al. Phage-mediated immuno-PCR for ultrasensitive detection of Cry1Ac protein based on nanobody[J]. Journal of Agricultural and Food Chemistry,2016,64:7882-7889.
[125]徐重新,金嘉凤,沈成,等. 具杀虫功能的蛋白类生物材料研究进展[J]. 农药学学报,2023,25(5):990-1003.
[126]DOWNING K J, THOMSON J A. Introduction of the Serratia marcescens chiA gene into an endophytic Pseudomonas fluorescens for the biocontrol of phytopathogenic fungi[J]. Canadian journal of Microbiology,2000,46:363-369.
[127]QI G, LAN N, MA X, et al. Controlling Myzus persicae with recombinant endophytic fungi Chaetomium globosum expressing Pinellia ternata agglutinin:using recombinant endophytic fungi to control aphids[J]. Journal of Applied Microbiology, 2011, 110:1314-1322.
[128]IWABUCHI K, MIYAMOTO K, JOURAKU A, et al. ABC transporter subfamily B1 as a susceptibility determinant of Bombyx mori larvae to Cry1Ba, Cry1Ia and Cry9Da toxins[J]. Insect Biochemistry and Molecular Biology, 2023, 163:104030.
[129]徐重新,刘媛,张霄,等. Bt Cry毒素抗虫模拟物靶向创新设计[J]. 生物工程学报,2023,39(2):446-458.
[130]PARDO-LOPEZ L, SOBERON M, BRAVO A. Bacillus thuringiensis insecticidal three-domain Cry toxins:mode of action, insect resistance and consequences for crop protection[J]. FEMS Microbiology Reviews,2013,37:3-22.
[131]WAN Z, CHEN Y, HU S, et al. A peptide Epitope-synthetic hydrogel polymer conjugate that mimics insecticidal protein receptors. Application in environmental and biological analysis[J]. Chemical Engineering Journal,2023,451:138671.
[132]WANG Y, ZHANG X, XIE Y, et al. High-affinity phage-displayed peptide as a recognition probe for the detection of Cry2Ad2-3[J]. International Journal of Biological Macromolecules,2019,137:562-567.
[133]LU X, JIANG D J, YAN J X, et al. An ultrasensitive electrochemical immunosensor for Cry1Ab based on phage displayed peptides[J]. Talanta,2018,179:646-651.
[134]JIN S, YE Z, WANG Y, et al. A novel impedimetric microfluidic analysis system for transgenic protein Cry1Ab detection[J]. Scientific Reports,2017,7:43175.
[135]CHEN K, HAN H, LOU Z, et al. A practicable detection system for genetically modified rice by SERS-barcoded nanosensors[J]. Biosensors Bioelectronics,2012,34:118-124.

相似文献/References:

[1]徐重新,张霄,张存政,等.鼠源噬菌体抗体展示库的构建及初步应用[J].江苏农业学报,2017,(01):210.[doi:10.3969/j.issn.1000-4440.2017.01.034 ]
 XU Chong-xin,ZHANG Xiao,ZHANG Cun-zheng,et al.Construction and preliminary application study of phage display antibody library from mouse[J].,2017,(12):210.[doi:10.3969/j.issn.1000-4440.2017.01.034 ]

备注/Memo

备注/Memo:
收稿日期:2024-03-13基金项目:江苏省自然科学基金面上项目(BK20231384);国家自然科学基金重点项目(31630061);国家重点研发计划政府间国际合作重点专项(2023YFE0109400);江苏省农业自主创新基金项目[CX(22)1009]作者简介:徐重新(1987-),男,湖南新田人,博士,副研究员,主要从事农业食品安全危害物防控研究。(E-mail)hhxyxcx@163.com收稿日期:2024-03-13基金项目:江苏省自然科学基金面上项目(BK20231384);国家自然科学基金重点项目(31630061);国家重点研发计划政府间国际合作重点专项(2023YFE0109400);江苏省农业自主创新基金项目[CX(22)1009]作者简介:徐重新(1987-),男,湖南新田人,博士,副研究员,主要从事农业食品安全危害物防控研究。(E-mail)hhxyxcx@163.com
更新日期/Last Update: 2025-01-23