[1]孟磊,林晗,丁新兰,等.杉木不同器官中内生细菌的多样性分析[J].江苏农业学报,2024,(12):2367-2376.[doi:doi:10.3969/j.issn.1000-4440.2024.12.020]
 MENG Lei,LIN Han,DING Xinlan,et al.Diversity analysis of endophytic bacteria in different organs of Cunninghamia lanceolata (Lamb.) Hook.[J].,2024,(12):2367-2376.[doi:doi:10.3969/j.issn.1000-4440.2024.12.020]
点击复制

杉木不同器官中内生细菌的多样性分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年12期
页码:
2367-2376
栏目:
园艺
出版日期:
2024-12-30

文章信息/Info

Title:
Diversity analysis of endophytic bacteria in different organs of Cunninghamia lanceolata (Lamb.) Hook.
作者:
孟磊12林晗12丁新兰3谢安强14简灵静12王英姿5陈灿14
(1.福建农林大学林学院,福建福州350002;2.福建省高校森林生态系统经营与过程重点实验室,福建福州350002;3.福建省上杭白砂国有林场,福建龙岩364200;4.福建农林大学菌草与生态学院,福建福州350002;5.福州市自然保护地规划发展中心,福建 福州350002)
Author(s):
MENG Lei12LIN Han12DING Xinlan3XIE Anqiang14JIAN Lingjing12WANG Yingzi5CHEN Can14
(1.Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China;2.Key Lab for Forest Ecosystem Processes and Management in Fujian Province, Fuzhou 350002, China;3.Fujian Shanghang Baisha Forestry Farm, Longyan 364200, China;4.College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;5.Fuzhou Nature Reserve Planning and Development Center, Fuzhou 350002, China)
关键词:
杉木内生细菌高通量测序多样性相对丰度
Keywords:
Cunninghamia lanceolata (Lamb.) Hook.endophytic bacteriahigh-throughput sequencingdiversityrelative abundance
分类号:
S791.27;Q938
DOI:
doi:10.3969/j.issn.1000-4440.2024.12.020
文献标志码:
A
摘要:
为探明杉木不同器官中内生细菌的群落组成和特点,挖掘杉木丰富的微生物资源,并为筛选杉木中特色微生物资源提供理论依据,本研究采用Illumina Miseq平台的高通量测序技术,对多年生杉木根、茎、叶中的内生细菌16S rDNA V3~V4高变区序列进行检测,分析杉木不同器官中内生细菌的多样性及其群落组成差异。扩增子序列变体(ASV)分析结果表明,杉木根、茎、叶中的ASV数量分别为7 108个、2 017个和1 911个。对杉木根、茎、叶中内生细菌进行分析,发现变形菌门(Proteobacteria)、放线菌门(Actinobacteria)和酸杆菌门(Acidobacteria)为主要优势菌门,相对丰度分别为67.930%、13.800%和6.250%;α-变形菌纲(Alphaproteobacteria)、γ-变形菌纲(Gammaproteobacteria)和放线菌纲(Actinobacteria)为主要优势菌纲,相对丰度分别为41.180%、19.710%和11.180%;1174-901-12、P3OB-42和甲基杆菌属(Methylobacterium)为主要优势菌属,相对丰度分别为14.430%、5.890%和5.300%。物种组成热图与主坐标分析(PCoA)结果表明,杉木根中的内生细菌菌群组成与茎、叶中的内生细菌菌群组成存在明显差异,茎与叶中的内生细菌菌群组成相似。功能预测结果表明,多年生杉木根、茎、叶中内生细菌的代谢途径主要为生物合成。多年生杉木根、茎、叶中存在丰富的内生细菌,根中的内生细菌多样性、丰富度高于茎和叶。本研究揭示了杉木内生细菌的群落组成,可以为今后筛选、利用杉木内生细菌资源提供理论依据。
Abstract:
To explore the community composition and characteristics of endophytic bacteria in different organs of Cunninghamia lanceolata (Lamb.) Hook., explore the rich microbial resources of C. lanceolata, and provide a theoretical basis for screening the characteristic microbial resources in C. lanceolata, the sequences of endophytic bacterial 16S rDNA V3-V4 high-variable regions in roots, stems and leaves of the perennial C. lanceolata were detected using high-throughput sequencing technology based on the Illumina Miseq platform. Moreover, the diversity and community structure of endophytic bacteria in different organs of C. lanceolata were analyzed. The results of amplicon sequence variant (ASV) analysis showed that the number of ASV in C. lanceolata roots, stems and leaves was 7 108, 2 017 and 1 911, respectively. Proteobacteria, Actinobacteria and Acidobacteria were the dominant bacteria in different organs of C. lanceolata, the relative abundances were 67.930%, 13.800% and 6.250%. Alphaproteobacteria, Gammaproteobacteria and Actinobacteria were the main dominant classes, with relative abundances of 41.180%, 19.710% and 11.180%, respectively. 1174-901-12, P3OB-42 and Methylobacterium were the main dominant genera, with relative abundances of 14.430%, 5.890% and 5.300%, respectively. The results of species composition heat map and principal coordinate analysis (PCoA) indicated that the composition of endophytic bacteria in the roots of C. lanceolata was significantly different from that in the stems and leaves, and the composition of endophytic bacteria in the stems and leaves was similar. The functional prediction results showed that the metabolic pathway of endophytic bacteria in roots, stems and leaves of perennial C. lanceolata was mainly biosynthesis. Rich endophytic bacteria were present in roots, stems and leaves of perennial C. lanceolata, and the diversity and abundance of endophytic bacteria in roots were higher than those in stems and leaves. This study reveals the community composition of endophytic bacteria in C. lanceolata, which can provide a theoretical basis for the screening and utilization of endophytic bacteria resources in C. lanceolata in the future.

参考文献/References:

[1]LIU C, ZHAO R Y. Study on land ecological assessment of villages and towns based on GIS and remote sensing information technology[J]. Arabian Journal of Geosciences,2021,14(6):529.
[2]YAN K, HE L M, ZHOU W H, et al. Determination of the community structure and diversity of endophytic bacteria from Alpinia zerumbet seeds[J]. International Journal of Agriculture and Biology,2020,24(3):420-428.
[3]AFZAL I, SHINWARI Z K, SIKANDAR S, et al. Plant beneficial endophytic bacteria: mechanisms,diversity,host range and genetic determinants[J]. Microbiological Research,2019,221:36-49.
[4]FRANK A C, SALDIERNA GUZMN J P, SHAY J E. Transmission of bacterial endophytes[J]. Microorganisms, 2017,5(4):70.
[5]WANG Z S, ZHU Y Q, LI N, et al. High-throughput sequencing-based analysis of the composition and diversity of endophytic bacterial community in seeds of saline-alkali tolerant rice[J]. Microbiological Research,2021,250:126794.
[6]HASSANI M A, DURN P, HACQUARD S. Microbial interactions within the plant holobiont[J]. Microbiome,2018,6(1):58.
[7]HUANG Y H. Illumina-based analysis of endophytic bacterial diversity of four Allium species[J]. Scientific Reports,2019,9(1):15271.
[8]OITA S, CAREY J, KLINE I, et al. Methodological approaches frame insights into endophyte richness and community composition[J]. Microbial Ecology,2021,82(1):21-34.
[9]ERCOLINI D, MOSCHETTI G, BLAIOTTA G, et al. The potential of a polyphasic PCR-DGGE approach in evaluating microbial diversity of natural whey cultures for water-buffalo mozzarella cheese production:bias of culture-dependent and culture-independent analyses[J]. Systematic and Applied Microbiology,2001,24(4):610-617.
[10]SCHLOSS P D, HANDELSMAN J. Metagenomics for studying unculturable microorganisms: cutting the Gordian knot[J]. Genome Biology,2005,6(8):229.
[11]CHEN J Q, ZHAO G Y, WEI Y H, et al. Isolation and screening of multifunctional phosphate solubilizing bacteria and its growth-promoting effect on Chinese fir seedlings[J]. Scientific Reports,2021,11(1):9081.
[12]MANTER D K, DELGADO J A, HOLM D G, et al. Pyrosequencing reveals a highly diverse and cultivar-specific bacterial endophyte community in potato roots[J]. Microbial Ecology,2010,60(1):157-166.
[13]陈美琪,王兴,黎俊彦,等. 基于高通量测序和组织分离法的虎耳草内生真菌多样性分析及其抗氧化活性研究[J]. 中草药,2023,54(6):1924-1934.
[14]吕佩,王新绘,刘晓颖,等. 药用植物刺山柑不同部位细菌群落结构及其多样性[J]. 微生物学报,2023,63(10):3939-3954.
[15]AKRAM A, MALEY M, GOSBELL I, et al. Utility of 16S rRNA PCR performed on clinical specimens in patient management[J]. International Journal of Infectious Diseases,2017,57:144-149.
[16]DONG W W, XUAN F L, ZHONG F L, et al. Comparative analysis of the rats’ gut microbiota composition in animals with different ginsenosides metabolizing activity[J]. Journal of Agricultural and Food Chemistry,2017,65(2):327-337.
[17]杨敬敬,韩烁,王霞,等. 三倍体毛白杨不同组织内生细菌多样性分析[J]. 微生物学通报,2022,49(8):3021-3036.
[18]CALLAHAN B J, MCMURDIE P J, ROSEN M J, et al. DADA2:high-resolution sample inference from Illumina amplicon data[J]. Nature Methods,2016,13(7):581-583.
[19]DOUGLAS G M, LANGILLE M G I. Current and promising approaches to identify horizontal gene transfer events in metagenomes[J]. Genome Biology and Evolution,2019,11(10):2750-2766.
[20]FIRRAO G, ANDERSEN M, BERTACCINI A, et al. ‘Candidcatus Phytoplasma’,a taxon for the wall-less,non-helical prokaryotes that colonize plant phloem and insects[J]. International Journal of Systematic and Evolutionary Microbiology,2004,54(4):1243-1255.
[21]RAZIN S, YOGEV D, NAOT Y. Molecular biology and pathogenicity of mycoplasmas[J]. Microbiology and Molecular Biology Reviews,1998,62(4):1094-1156.
[22]VANDENKOORNHUYSE P, QUAISER A, DUHAMEL M, et al. The importance of the microbiome of the plant holobiont[J]. New Phytologist,2015,206(4):1196-1206.
[23]REN F, DONG W, YAN D H. Endophytic bacterial communities of Jingbai pear trees in North China analyzed with Illumina sequencing of 16S rDNA[J]. Archives of Microbiology,2019,201(2):199-208.
[24]李亮亮,雷高,李磊,等. 基于高通量测序分析花生不同器官内生细菌群落多样性[J]. 花生学报,2021,50(2):1-7,20.
[25]ZHAO B X, YAN J F, CHEN X, et al. The diversity and organ distribution of endophytic bacteria of sweet cherry[J]. Scienceasia,2022,48(6):839-846.
[26]SPAEPEN S, VANDERLEYDEN J, REMANS R. Indole-3-acetic acid in microbial and microorganism-plant signaling[J]. FEMS Microbiology Reviews,2007,31(4):425-448.
[27]罗阳兰. 蕙兰内生真菌多样性及其促生能力的研究[D]. 汉中:陕西理工大学,2019.
[28]姚阳阳. 当归根际变形菌门促生菌的分离、筛选及促生抗逆效应研究[D]. 兰州:甘肃中医药大学,2022.
[29]任丽娟,何聃,邢鹏,等. 湖泊水体细菌多样性及其生态功能研究进展[J]. 生物多样性,2013,21(4):422-433.
[30]艾佳. 贵州典型湿地中甲烷氧化菌的群落结构及功能研究[D]. 贵阳:贵州大学,2022.
[31]HUO X W, WANG Y, ZHANG D W, et al. Characteristics and diversity of endophytic bacteria in endangered Chinese herb Glehnia littoralis based on Illumina sequencing[J]. Polish Journal of Microbiology,2020,69(3):283-291.

相似文献/References:

[1]柳志强,李乔曼,徐爽,等.催吐萝芙木内生菌 Bacillus subtilis LYM3 的抑菌活性产物[J].江苏农业学报,2017,(01):67.[doi:10.3969/j.issn.1000-4440.2017.01.011 ]
 LIU Zhi-qiang,LI Qiao-man,XU Shuang,et al.Antifungal activity products of an endophyte Bacillus subtilis LYM3 from Rauvolfia vomitoria Afzel[J].,2017,(12):67.[doi:10.3969/j.issn.1000-4440.2017.01.011 ]
[2]陈泽斌,李冰,王定康,等.Illumina MiSeq高通量测序分析核桃内生细菌多样性[J].江苏农业学报,2015,(05):1129.[doi:doi:10.3969/j.issn.1000-4440.2015.05.029]
 CHEN Ze-bin,LI Bing,WANG Ding-kang,et al.Diversity of endophytic bacteria in walnut analyzed by Illumina MiSeq high-throughput sequencing technology[J].,2015,(12):1129.[doi:doi:10.3969/j.issn.1000-4440.2015.05.029]

备注/Memo

备注/Memo:
收稿日期:2023-12-26基金项目:福建省林业局重点项目(KLb21009B);福建农林大学横向科研项目(KH200200A、KH220045A)作者简介:孟磊(1997-),男,陕西榆林人,硕士研究生,研究方向为森林培育技术。(E-mail)m1941262819@163.com通讯作者:林晗,(E-mail)fjlinhan@163.com
更新日期/Last Update: 2025-01-23