[1]周笑如,周昱成,刘学,等.狭叶薰衣草叶片愈伤组织和悬浮细胞组织培养及其代谢物差异[J].江苏农业学报,2024,(12):2356-2366.[doi:doi:10.3969/j.issn.1000-4440.2024.12.019]
 ZHOU Xiaoru,ZHOU Yucheng,LIU Xue,et al.Leaf callus and suspension cell tissue culture of Lavandula angustata Mill. and their metabolite differences[J].,2024,(12):2356-2366.[doi:doi:10.3969/j.issn.1000-4440.2024.12.019]
点击复制

狭叶薰衣草叶片愈伤组织和悬浮细胞组织培养及其代谢物差异()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年12期
页码:
2356-2366
栏目:
园艺
出版日期:
2024-12-30

文章信息/Info

Title:
Leaf callus and suspension cell tissue culture of Lavandula angustata Mill. and their metabolite differences
作者:
周笑如周昱成刘学刘春环杨成
(江南大学化学与材料工程学院,江苏无锡214122)
Author(s):
ZHOU XiaoruZHOU YuchengLIU XueLIU ChunhuanYANG Cheng
(School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China)
关键词:
狭叶薰衣草组织培养愈伤组织悬浮细胞次生代谢物代谢组学
Keywords:
Lavandula angustifolia Mill.tissue culturecallussuspension cellsecondary metabolitesmetabolomics
分类号:
Q942.6
DOI:
doi:10.3969/j.issn.1000-4440.2024.12.019
文献标志码:
A
摘要:
为明确狭叶薰衣草(Lavandula angustifolia Mill.)叶片产生活性代谢物的能力,本研究以狭叶薰衣草无菌苗叶片为外植体,建立无菌苗叶片愈伤组织和悬浮细胞培养体系,利用超高效液相色谱-四级杆-飞行时间串联质谱仪(UHPLC-Q-TOF-MS)对愈伤组织和悬浮细胞的代谢物进行表征,并分析差异代谢物的代谢通路,比较代谢物对ABTS(2,2′-联氮-双-3-乙基苯并噻唑啉-6-磺酸)自由基的清除能力。结果表明,狭叶薰衣草种子在培养30 d后即可得到无菌苗,愈伤组织和悬浮细胞在培养8 d后,生长量可提升7倍以上。愈伤组织和悬浮细胞中共检测出1 403种代谢物,包括迷迭香酸、齐墩果酸、咖啡酸甲酯等薰衣草特色活性物质和未报道过的人参皂苷F3、积雪草酸、羟基积雪草酸、刺囊酸等活性物质。从1 403种代谢物中筛选得到218种差异显著性代谢物,包括49种生物活性物质。愈伤组织和悬浮细胞表现出不同的代谢物合成能力,愈伤组织偏向于酚酸类化合物的合成而悬浮细胞偏向于萜类化合物的合成。差异代谢通路主要富集于代谢途径(Metabolic pathways)和核苷酸代谢(Nucleotide metabolism)通路。愈伤组织和悬浮细胞乙醇提取物均具有较高的ABTS自由基清除能力,半清除质量浓度(IC50)分别为0.50 mg/mL和0.49 mg/mL。因此,利用狭叶薰衣草无菌苗叶片作为外植体,利用不同的组织培养方式,可以得到多样化的次生代谢产物。本研究结果为狭叶薰衣草叶片愈伤组织和悬浮细胞组织培养及其代谢物提取提供了依据。
Abstract:
In order to clarify the ability of Lavandula angustifolia Mill. leaves to produce bioactive metabolites, the sterile seedlings of L. angustifolia were used as explants to establish the culture system of callus and suspension cells of sterile seedling leaves. The metabolites of callus and suspension cells were characterized by ultra-high performance liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry (UHPLC-Q-TOF-MS), and the metabolic pathways of differential metabolites were analyzed. The scavenging ability of metabolites to ABTS (2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid) free radicals was compared. The results showed that the aseptic seedlings could be obtained after 30 days of culture, and the growth of callus and suspension cells could be increased by more than seven times after eight days of culture. A total of 1 403 metabolites were detected in callus and suspension cells, including rosmarinic acid, oleanolic acid, caffeic acid methyl ester and other characteristic active substances of lavender and unreported ginsenoside F3, asiatic acid, hydroxyasiatic acid, echinocystic acid and other active substances. A total of 218 significantly different metabolites were screened from 1 403 metabolites, including 49 bioactive substances. Callus and suspension cells showed different ability to synthesize metabolites. Callus preferred the synthesis of phenolic acids, while suspension cells preferred the synthesis of terpenoids. The differential metabolic pathways were mainly enriched in Metabolic pathways and Nucleotide metabolism pathways. The ethanol extracts of callus and suspension cells had high ABTS free radical scavenging ability, and the half scavenging mass concentration (IC50) was 0.50 mg/mL and 0.49 mg/mL, respectively. Therefore, using the leaves of Lavandula angustata aseptic seedlings as explants, using different tissue culture methods, a variety of secondary metabolites can be obtained. The results of this study can provide a basis for callus and suspension cell tissue culture and metabolite extraction of Lavender angustifolia leaves.

参考文献/References:

[1]杨莹,位凯,吕达平. 吸入薰衣草精油对原发性失眠症患者的临床疗效[J]. 中国医药导报,2016,13(24):144-147.
[2]陈莘雨,陈新梅. 薰衣草化学成分与药理作用研究进展[J]. 中华中医药杂志,2022,37(3):1600-1604.
[3]杨鑫,詹爽,彭尽晖,等. 狭叶薰衣草的离体培养及挥发性成分的分析[J]. 热带亚热带植物学报,2020,28(1):84-90.
[4]许耀祖,王晓军,赵民安,等. 薰衣草细胞悬浮培养体系的优化[J]. 细胞生物学杂志,2005,27(6):701-704.
[5]KOVATCHEVA E, PAVLOV A, KOLEVA I, et al. Rosmarinic acid from Lavandula vera MM cell culture[J]. Phytochemistry,1996,43(6):1243-1244.
[6]PAVLOV A, ILIEVA M, MINCHEVA M. Release of rosmarinic acid by Lavandula vera MM cell suspension in two-phase culture systems[J]. World Journal of Microbiology and Biotechnology,2001,17(4):417-421.
[7]YULIANA N D, KHATIB A, CHOI Y H, et al. Metabolomics for bioactivity assessment of natural products[J]. Phytotherapy Research,2011,25(2):157-169.
[8]TOPU G, HERRMANN G, KOLAK U, et al. Isolation of fatty acids and aromatics from cell suspension cultures of Lavandula angustifolia[J]. Natural Product Research,2007,21(2):100-105.
[9]HRAL B, STIERLIN , FERNANDEZ X, et al. Phytochemicals from the genus Lavandula:a review[J]. Phytochemistry Reviews,2021,20(4):751-771.
[10]MOSHARI-NASIRKANDI A, ALIREZALU A, ALIPOUR H, et al. Screening of 20 species from Lamiaceae family based on phytochemical analysis,antioxidant activity and HPLC profiling[J]. Scientific Reports,2023,13(1):16987.
[11]谭周倩,钱骅,黄晓德,等. 薰衣草茎叶中几种有机酸的含量测定[J]. 中国野生植物资源,2020,39(11):34-38.
[12]AYELESO T B, MATUMBA M G, MUKWEVHO E. Oleanolic acid and its derivatives:biological activities and therapeutic potential in chronic diseases[J]. Molecules,2017,22(11):1915.
[13]TAN S C, BHATTAMISRA S K, CHELLAPPAN D K, et al. Actions and therapeutic potential of madecassoside and other major constituents of Centella asiatica:a review [J]. Applied Sciences,2021,11(18):8475.
[14]LIMA V F, MEDEIROS D B, DOS ANJOS L, et al. Toward multifaceted roles of sucrose in the regulation of stomatal movement[J]. Plant Signaling & Behavior,2018,13(8):e1494468.
[15]YOON J, CHO L H, TUN W, et al. Sucrose signaling in higher plants[J]. Plant Science,2021,302:110703.
[16]DEWANGAN B P, GUPTA A, SAH R K, et al. Xylobiose treatment triggers a defense-related response and alters cell wall composition[J]. Plant Molecular Biology,2023,113 (6):383-400.
[17]WURTZEL E T, KUTCHAN T M. Plant metabolism,the diverse chemistry set of the future[J]. Science,2016,353(6305):1232-1236.
[18]WANG C G, HUANG X E, LI Q, et al. Extracellular pyridine nucleotides trigger plant systemic immunity through a lectin receptor kinase/BAK1 complex [J]. Nature Communications,2019,10(1):4810.
[19]WITTE C P, HERDE M. Nucleotide metabolism in plants[J]. Plant Physiology,2020,182(1):63-78.
[20]刘刚,伍佩珂,蒋小妹,等. 桂花果皮醇提物的抑菌活性和抗氧化活性的研究[J]. 四川师范大学学报(自然科学版),2018,41(5):672-676.
[21]金学俊,栗铭鸿,崔福顺. 人参茎叶成分分析及提取物抗氧化活性研究[J]. 食品科技,2018,43(9):279-284.

备注/Memo

备注/Memo:
收稿日期:2024-04-15基金项目:江苏省自然科学基金青年项目(BK20221069)作者简介:周笑如(1999-),女,江苏南通人,硕士研究生,研究方向为植物组织培养及活性成分研究。(E-mail)xiaoru0901@163.com通讯作者:刘学,(E-mail)xueliu@jiangnan.edu.cn收稿日期:2024-04-15基金项目:江苏省自然科学基金青年项目(BK20221069)作者简介:周笑如(1999-),女,江苏南通人,硕士研究生,研究方向为植物组织培养及活性成分研究。(E-mail)xiaoru0901@163.com通讯作者:刘学,(E-mail)xueliu@jiangnan.edu.cn
更新日期/Last Update: 2025-01-23