参考文献/References:
[1]王立浩,张宝玺,张正海,等. “十三五”我国辣椒育种研究进展、产业现状及展望[J]. 中国蔬菜,2021(2):21-29.
[2]乔立娟,赵帮宏,宗义湘,等. 我国辣椒产业发展现状、趋势及对策[J]. 中国蔬菜,2023(11):9-15.
[3]王海楠,弋景刚,张秀花. 番茄采摘机器人识别与定位技术研究进展[J]. 中国农机化学报,2020,41(5):188-196.
[4]SANTOS T T, DE SOUZA L L, DOS SANTOS A A, et al. Grape detection, segmentation and tracking using deep neural networks and three-dimensional association[J]. Computers and Electronics in Agriculture,2020,170:105247.
[5]杨坚,钱振,张燕军,等.采用改进YOLOv4-tiny的复杂环境下番茄实时识别[J]. 农业工程学报,2022,38(9):215-221.
[6]HE Z X, KARKEE M, ZHANG Q. Detecting and localizing strawberry centers for robotic harvesting in field environment[J]. IFAC-PapersOnLine,2022,55(32):30-35.
[7]张楠楠,张晓,白铁成,等. 基于CBAM-YOLO v7的自然环境下棉叶病虫害识别方法[J]. 农业机械学报,2023,54(S1):239-244.
[8]王金星,马博,王震,等. 基于改进Mask R-CNN的苹果园害虫识别方法[J]. 农业机械学报,2023,54(6):253-263,360.
[9]JI W, GAO X X, XU B, et al. Target recognition method of green pepper harvesting robot based on manifold ranking[J]. Computers and Electronics in Agriculture,2020,177:105663.
[10]LI X, PAN J D, XIE F P, et al. Fast and accurate green pepper detection in complex backgrounds via an improved YOLOv4-tiny model[J]. Computers and Electronics in Agriculture,2021,191:106503.
[11]CONG P C, LI S D, ZHOU J C, et al. Research on instance segmentation algorithm of greenhouse sweet pepper detection based on improved mask RCNN[J]. Agronomy,2023,13(1):196.
[12]NAN Y L, ZHANG H C, ZENG Y, et al. Faster and accurate green pepper detection using NSGA-Ⅱ-based pruned YOLOv5l in the field environment[J]. Computers and Electronics in Agriculture,2023,205:107563.
[13]LI T H, SUN M, HE Q H, et al. Tomato recognition and location algorithm based on improved YOLOv5[J]. Computers and Electronics in Agriculture,2023,208:107759.
[14]MENG F, LI J, ZHANG Y, et al. Transforming unmanned pineapple picking with spatio-temporal convolutional neural networks[J]. Computers and Electronics in Agriculture,2023,214:108298.
[15]李恒,南新元,高丙朋,等. 一种基于GhostNet的绿色类圆果实识别方法[J]. 江苏农业学报,2023,39(3):724-731.
[16]ZHU W D, SUN J, WANG S M, et al. Segmentation and recognition of filed sweet pepper based on improved self-attention convolutional neural networks[J]. Multimedia Systems,2023,29(1):223-234.
[17]ZHONG S, XU W, ZHANG T, et al. Identification and Depth Localization of Clustered Pod Pepper Based on Improved Faster R-CNN[J]. IEEE Access,2022,10:93615-93625.
[18]LI D, SUN X, LV S, et al. A novel approach for the 3D localization of branch picking points based on deep learning applied to longan harvesting UAVs[J]. Computers and Electronics in Agriculture,2022,199:107191.
[19]翟先一,魏鸿磊,韩美奇,等. 基于改进YOLO卷积神经网络的水下海参检测[J]. 江苏农业学报,2023,39(7):1543-1553.
[20]王昱,姚兴智,李斌,等. 基于改进YOLO v7-tiny的甜椒畸形果识别算法[J]. 农业机械学报,2023,54(11):236-246.
[21]FU L, DUAN J, ZOU X, et al. Banana detection based on color and texture features in the natural environment[J]. Computers and Electronics in Agriculture,2019,167:105057.
[22]FANG W, WANG L, REN P. Tinier-YOLO: a real-time object detection method for constrained environments[J]. IEEE Access,2019,8:1935-1944.
[23]PARK K, HONG Y K, KIM G H, et al. Classification of apple leaf conditions in hyper-spectral images for diagnosis of Marssonina blotch using m RMR and deep neural network[J]. Computers and Electronics in Agriculture,2018,148:179-187.
[24]刘思幸,李爽,缪宏,等. 基于YOLOv3不同场景辣椒采摘机器人识别定位研究[J]. 农机化研究,2024,46(2):38-43.
[25]WU F, DUAN J, AI P, et al. Rachis detection and three-dimensional localization of cut off point for vision-based banana robot[J]. Computers and Electronics in Agriculture,2022,198:107079.
[26]JIN Y, YU C, YIN J, et al. Detection method for table grape ears and stems based on a far-close-range combined vision system and hand-eye-coordinated picking test[J]. Computers and Electronics in Agriculture,2022,202:107364.
[27]BAI Y H, MAO S H, ZHOU J, et al. Clustered tomato detection and picking point location using machine learning-aided image analysis for automatic robotic harvesting[J]. Precision Agriculture,2023,24(2):727-743.
[28]ZHAI S, SHANG D, WANG S, et al. DF-SSD: An improved SSD object detection algorithm based on Dense Net and feature fusion[J]. IEEE Access,2020,8:24344-24357.
[29]原昊. 基于深度学习的彩椒识别和定位技术研究[D]. 泰安:山东农业大学,2023.
[30]储鑫,李祥,罗斌,等. 基于改进YOLOv4算法的番茄叶部病害识别方法[J]. 江苏农业学报,2023,39(5):1199-1208.
相似文献/References:
[1]曾绍贵,朱邦彤,罗木旺,等.100份朝天椒的农艺性状和SRAP标记遗传多样性分析[J].江苏农业学报,2018,(04):871.[doi:doi:10.3969/j.issn.1000-4440.2018.04.023]
ZENG Shao-gui,ZHU Bang-tong,LUO Mu-wang,et al.Agronomic characters and genetic diversity analysis of 100 pot pepper with SRAP markers[J].,2018,(12):871.[doi:doi:10.3969/j.issn.1000-4440.2018.04.023]
[2]魏茜雅,林欣琪,梁腊梅,等.褪黑素引发处理提高朝天椒种子萌发及幼苗耐盐性的生理机制[J].江苏农业学报,2022,38(06):1637.[doi:doi:10.3969/j.issn.1000-4440.2022.06.023]
WEI Xi-ya,LIN Xin-qi,LIANG La-mei,et al.Physiological mechanism of melatonin soaking on improving seed germination and seedling salt tolerance of pepper[J].,2022,38(12):1637.[doi:doi:10.3969/j.issn.1000-4440.2022.06.023]
[3]方国文,何超,王鑫泽.基于YOLOv8n的轻量级巴旦木果实识别方法[J].江苏农业学报,2024,(09):1662.[doi:doi:10.3969/j.issn.1000-4440.2024.09.010]
FANG Guowen,HE Chao,WANG Xinze.Lightweight almond fruit recognition method based on YOLOv8n[J].,2024,(12):1662.[doi:doi:10.3969/j.issn.1000-4440.2024.09.010]