参考文献/References:
[1]徐君,尹渝来,薛博文,等. 基于SSR标记的芡实遗传多样性分析及指纹图谱构建[J]. 中国蔬菜,2023(12):79-85.
[2]ONG K L, STAFFORD L K, MCLAUGHLIN S A, et al. Global,regional,and national burden of diabetes from 1990 to 2021,with projections of prevalence to 2050:a systematic analysis for the Global Burden of Disease Study 2021[J]. The Lancet,2023,402(10397):203-234.
[3]GONG Q H, ZHANG P, WANG J P, et al. Morbidity and mortality after lifestyle intervention for people with impaired glucose tolerance:30-year results of the Da Qing diabetes prevention outcome study[J]. The Lancet Diabetes & Endocrinology,2019,7(6):452-461.
[4]王盈蕴,吉红玉,朱向东. 芡实的临床应用及其用量探究[J]. 吉林中医药,2021,41(5):664-667.
[5]王华昆. 黄精芡实汤联合揿针疗法对轻型糖尿病患者的临床疗效分析[J]. 糖尿病新世界,2021,24(20):98-100,104.
[6]XU L, ZUO S M, LIU M, et al. Integrated analysis of metabolomics combined with network pharmacology and molecular docking reveals the effects of processing on metabolites of Dendrobium officinale[J]. Metabolites,2023,13(8):886.
[7]朱和权,李勇,李春阳,等. 基于代谢组学及网络药理学分析天麻熟制过程中生物学活性变化[J]. 食品工业科技,2023,44(3):29-39.
[8]MU Q E, ZHANG M X, LI Y, et al. Metabolomic analysis reveals the effect of insecticide chlorpyrifos on rice plant metabolism[J]. Metabolites,2022,12(12):1289.
[9]张丽,曾嘉程,王梦,等. 不同产地芡实的品质特性评价[J]. 食品工业科技,2019,40(11):70-78.
[10]LIN Y R, ZHENG F T, XIONG B J, et al. Koumine alleviates rheumatoid arthritis by regulating macrophage polarization[J]. Journal of Ethnopharmacology,2023,311:116474.
[11]LU J S, YANG L, CHEN J, et al. Basolateral amygdala astrocytes modulate diabetic neuropathic pain and may be a potential therapeutic target for koumine[J]. British Journal of Pharmacology,2023,180(10):1408-1428.
[12]YUAN Z H, YANG M R, LIANG Z, et al. PI3K/AKT/mTOR,NF-κB and ERS pathway participated in the attenuation of H2O2-induced IPEC-J2 cell injury by koumine[J]. Journal of Ethnopharmacology,2023,304:116028.
[13]XUE H, XING H J, WANG B, et al. Cinchonine,a potential oral small-molecule glucagon-like peptide-1 receptor agonist,lowers blood glucose and ameliorates non-alcoholic steatohepatitis[J]. Drug Design,Development and Therapy,2023,17:1417-1432.
[14]WANG H, SHI Y T, MA D N, et al. Cinchonine exerts anti-tumor and immunotherapy sensitizing effects in lung cancer by impairing autophagic-lysosomal degradation[J]. Biomedicine & Pharmacotherapy,2023,164:114980.
[15]WANG Q L, WEI C M, WENG W, et al. Enhancement of oral bioavailability and hypoglycemic activity of liquiritin-loaded precursor liposome[J]. International Journal of Pharmaceutics,2021,592:120036.
[16]WANG Q L, ZHANG K Y, WENG W, et al. Liquiritin-hydroxypropyl-beta-cyclodextrin inclusion complex:preparation,characterization,bioavailability and antitumor activity evaluation[J]. Journal of Pharmaceutical Sciences,2022,111(7):2083-2092.
[17]BAI D D, XIAO W H. Regulatory effects and mechanisms of branched chain amino acids and metabolic intermediates on insulin resistance[J]. Acta Physiologica Sinica, 2023,75(2):291-302.
[18]PANGHAL A, KUMAR V, JENA G. Melphalan induced germ cell toxicity and dose-dependent effects of β-aminoisobutyric acid in experimental rat model:role of oxidative stress,inflammation and apoptosis[J]. Journal of Biochemical and Molecular Toxicology,2023,37(8):e23374.
[19]GHAIAD H R, ALI S O, AL-MOKADDEM A K, et al. Regulation of PKC/TLR-4/NF-κB signaling by sulbutiamine improves diabetic nephropathy in rats[J]. Chemico-Biological Interactions,2023,381:110544.
[20]MROWICKA M, MROWICKI J, DRAGAN G, et al. The importance of thiamine (Vitamin B1) in humans[J]. Bioscience Reports,2023,43(10):BSR20230374.
[21]MOSKOWITZ A, BERG K M, GROSSESTREUER A V, et al. Thiamine for renal protection in septic shock (TRPSS):a randomized,placebo-controlled trial[J]. American Journal of Respiratory and Critical Care Medicine,2023,208(5):570-578.
[22]LIANG Y D, DAI X L, CAO Y, et al. The neuroprotective and antidiabetic effects of trigonelline:a review of signaling pathways and molecular mechanisms[J]. Biochimie,2023,206:93-104.
[23]ZIA S R, WASIM M, AHMAD S. Unlocking therapeutic potential of trigonelline through molecular docking as a promising approach for treating diverse neurological disorders[J]. Metabolic Brain Disease,2023,38(8):2721-2733.
[24]WU Q, GUAN Y B, ZHANG K J, et al. Tanshinone ⅡA mediates protection from diabetes kidney disease by inhibiting oxidative stress induced pyroptosis[J]. Journal of Ethnopharmacology,2023,316:116667.
[25]SI J C, LIU B B, QI K R, et al. Tanshinone ⅡA inhibited intermittent hypoxia induced neuronal injury through promoting autophagy via AMPK-mTOR signaling pathway[J]. Journal of Ethnopharmacology,2023,315:116677.
[26]ZHANG W W, LIU M H, JI Y R, et al. Tanshinone ⅡA inhibits endometrial carcinoma growth through the MAPK/ERK/TRIB3 pathway[J]. Archives of Biochemistry and Biophysics,2023,743:109655.
[27]AMIN M M, ARBID M S. Estimation of ellagic acid and/or repaglinide effects on insulin signaling,oxidative stress,and inflammatory mediators of liver,pancreas,adipose tissue,and brain in insulin resistant/type 2 diabetic rats[J]. Applied Physiology,Nutrition,and Metabolism,2017,42(2):181-192.
[28]LU G Y, WANG X Z, CHENG M, et al. The multifaceted mechanisms of ellagic acid in the treatment of tumors:state-of-the-art[J]. Biomedicine & Pharmacotherapy,2023,165:115132.
[29]SZKUDELSKA K, SZKUDELSKI T. The anti-diabetic potential of betaine. Mechanisms of action in rodent models of type 2 diabetes[J]. Biomedicine & Pharmacotherapy,2022,150:112946.
[30]ZHANG Y, JIA J P. Betaine mitigates amyloid-β-associated neuroinflammation by suppressing the NLRP3 and NF-κB signaling pathways in microglial cells[J]. Journal of Alzheimer’s Disease,2023,94(S1):9-19.
[31]ZHENG L, LEE J, YUE L M, et al. Inhibitory effect of pyrogallol on α-glucosidase:integrating docking simulations with inhibition kinetics[J]. International Journal of Biological Macromolecules,2018,112:686-693.
[32]OZTURK SARIKAYA S B. Acethylcholinesterase inhibitory potential and antioxidant properties of pyrogallol[J]. Journal of Enzyme Inhibition and Medicinal Chemistry,2015,30(5):761-766.
[33]PATEL D K, PATEL K. Therapeutic importance of eriodictyol in the medicine for the treatment of diabetes and associated complication through its insulin secretagogue properties[J]. Metabolism,2022,128:155056.
[34]AZIZI S, MAHDAVI R, VAGHEF-MEHRABANY E, et al. Potential roles of citrulline and watermelon extract on metabolic and inflammatory variables in diabetes mellitus,current evidence and future directions:a systematic review[J]. Clinical and Experimental Pharmacology and Physiology,2020,47(2):187-198.
[35]IVANOVSKI N, WANG H H, TRAN H, et al. L-citrulline attenuates lipopolysaccharide-induced inflammatory lung injury in neonatal rats[J]. Pediatric Research,2023,94(5):1684-1695.
[36]PARK H Y, KIM S W, SEO J, et al. Dietary arginine and citrulline supplements for cardiovascular health and athletic performance:a narrative review[J]. Nutrients,2023,15(5):1268.
[37]LIN P B, ZHANG X J, ZHU B Y, et al. Naringenin protects pancreatic β cells in diabetic rat through activation of estrogen receptor β[J]. European Journal of Pharmacology,2023,960:176115.
[38]CAI J, WEN H L, ZHOU H, et al. Naringenin:a flavanone with anti-inflammatory and anti-infective properties[J]. Biomedicine & Pharmacotherapy,2023,164:114990.
[39]PUNITHAVATHI V R, PRINCE P S M, KUMAR R, et al. Antihyperglycaemic,antilipid peroxidative and antioxidant effects of gallic acid on streptozotocin induced diabetic Wistar rats[J]. European Journal of Pharmacology,2011,650(1):465-471.
[40]JANG J H, PARK J E, HAN J S. Scopoletin inhibits α-glucosidase in vitro and alleviates postprandial hyperglycemia in mice with diabetes[J]. European Journal of Pharmacology,2018,834:152-156.
[41]LEE S G, KIM M M. Anti-inflammatory effect of scopoletin in RAW264. 7 macrophages[J]. Journal of Life Science,2015,25(12):1377-1383.
[42]陈吉刚,庞琦,曾薇等. 甜菜碱对糖尿病肾病小鼠的治疗作用及其机制[J].第三军医大学学报,2012,34(11):1040-1043.
[43]JEONG H,MASON S P,BARABSI A L,et al. Lethality and centrality in protein networks[J]. Nature,2001,411(6833):41-42.
[44]芦宇婷,周仙杰,雷雨,等. 白芸豆提取物联合左旋肉碱对肥胖小鼠的减脂作用[J]. 卫生研究,2022,51(6):1015-1018.
[45]李焕,邓浩,刘晃,等. 左旋肉碱虾青素复合营养素治疗特发性少精子症和弱精子症的多中心临床观察[J]. 中华男科学杂志,2021,27(4):334-339.
[46]张梦洁,郭垚辉,任彬,等. 乙酰左旋肉碱对大鼠脊髓损伤保护作用的实验研究[J]. 中国实用神经疾病杂志,2020,23(17):1479-1483.
[47]JIANG Y, PEI J, ZHENG Y, et al. Gallic acid:a potential anti-cancer agent[J]. Chinese Journal of Integrative Medicine,2022,28(7):661-671.
[48]BHATTACHARYYA S, AHAMMED S M, SAHA B P, et al. The gallic acid-phospholipid complex improved the antioxidant potential of gallic acid by enhancing its bioavailability[J]. AAPS PharmSciTech,2013,14(3):1025-1033.
[49]LIN W L, WANG C J, TSAI Y Y, et al. Inhibitory effect of esculetin on oxidative damage induced by t-butyl hydroperoxide in rat liver[J]. Archives of Toxicology,2000,74(8):467-472.
[50]WANG K, ZHANG Y, EKUNWE S I N,et al. Antioxidant activity and inhibition effect on the growth of human colon carcinoma (HT-29) cells of esculetin from Cortex Fraxini[J]. Medicinal Chemistry Research,2011,20(7):968-974.
[51]KANITSORAPHAN C, RATTANAWONG P, CHAROENSRI S, et al. Trimethylamine N-oxide and risk of cardiovascular disease and mortality[J]. Current Nutrition Reports,2018,7(4):207-213.
[52]陈艳,许丽丽,王丽曼,等. 血浆三甲胺N-氧化物与心肌梗死关系的研究进展[J]. 医药导报,2023,42(4):524-528.
[53]赵霄潇,颜红兵. 三甲胺-N-氧化物在心血管相关疾病发病机制中的研究进展[J]. 心血管病学进展,2020,41(11):1123-1125,1136.
[54]LIU Y W, WANG L J, LI X K, et al. Tanshinone ⅡA improves impaired nerve functions in experimental diabetic rats[J]. Biochemical and Biophysical Research Communications,2010,399(1):49-54.
[55]ZHANG Y, ZHANG L, ZHANG Y, et al. The protective role of liquiritin in high fructose-induced myocardial fibrosis via inhibiting NF-κB and MAPK signaling pathway[J]. Biomedicine & Pharmacotherapy, 2016,84:1337-1349.
[56]ABDEL-MONEIM A, EL-TWAB S M A, YOUSEF A I, et al. Modulation of hyperglycemia and dyslipidemia in experimental type 2 diabetes by gallic acid and p-coumaric acid:the role of adipocytokines and PPARγ[J]. Biomedicine & Pharmacotherapy,2018,105:1091-1097.
[57]MUSTAFA H A, ALBKRYE A M S, ABDALLA B M, et al. Computational determination of human PPARG gene:SNPs and prediction of their effect on protein functions of diabetic patients[J]. Clinical and Translational Medicine,2020,9(1):7.
[58]DEMIR T, ONAY H, SAVAGE D B, et al. Familial partial lipodystrophy linked to a novel peroxisome proliferator activator receptor-γ (PPARG) mutation,H449L:a comparison of people with this mutation and those with classic codon 482 Lamin A/C (LMNA) mutations[J]. Diabetic Medicine,2016,33(10):1445-1450.
[59]LYSSENKO V, ALMGREN P, ANEVSKI D, et al. Genetic prediction of future type 2 diabetes[J]. PLoS Medicine,2005,2(12):e345.